
Master System Design Document
EOEPCA.SDD.001

TVUK System Team

Version Draft for 1.1, In Progress:

EOEPCA
Master System Design Document

i EOEPCA.SDD.001
Issue Draft for 1.1

Master System Design
1. Introduction. 2

1.1. Purpose and Scope . 2

1.2. Structure of the Document . 2

1.3. Reference Documents . 2

1.4. Terminology . 5

1.5. Glossary. 9

2. Context . 11

3. Design Overview. 13

3.1. Domain Areas . 13

3.1.1. User Management. 14

3.1.2. Processing and Chaining . 14

3.1.3. Resource Management . 14

3.1.4. Platform API. 15

3.1.5. Web Portal . 15

3.2. Architecture Layers . 16

4. User Management . 19

4.1. Functional Overview . 19

4.1.1. Identity and Access Management (IAM) . 19

4.1.2. Authentication . 23

4.1.3. Authorization. 26

4.1.3.1. Access Policy Checks. 26

4.1.3.2. Resource Protection Management . 26

4.1.3.3. Access Policy Management . 26

4.1.3.4. End-User Context Propagation. 27

4.1.3.5. Policy Context Propagation. 27

4.1.4. Accounting and Billing . 27

4.1.5. User Management. 32

4.1.6. Licence and T&C Management . 32

4.2. Architecture Overview . 36

4.2.1. Login Service . 36

4.2.1.1. OIDC ID Token . 37

4.2.1.2. OIDC Clients . 37

4.2.1.3. Additional OIDC Capabilities . 38

4.2.1.4. SCIM Endpoints . 38

4.2.1.5. Interaction with other components . 39

4.2.2. Policy Decision Point . 39

4.2.2.1. XACML (eXtensible Access Control Markup Language) . 39

4.2.2.2. UMA (User-Managed Access) . 41

EOEPCA.SDD.001
Issue Draft for 1.1

ii EOEPCA
Master System Design Document

4.2.2.3. Policy API . 48

4.2.2.4. Interaction with other components . 49

4.2.3. Policy Enforcement Point . 50

4.2.3.1. Overview . 50

4.2.3.2. Reverse Proxy Functionality. 50

4.2.3.3. Access Token Validation. 51

4.2.3.4. Resource API. 51

4.2.3.5. Interaction with other components . 52

4.2.4. Billing Service . 52

4.2.4.1. Interaction with other components . 53

4.2.5. Pricing Engine . 54

4.2.5.1. Interaction with other components . 54

4.2.6. License Manager . 54

4.2.6.1. Interaction with other components . 54

4.2.7. User Profile. 54

4.3. Use Case Traceability . 56

5. Processing and Chaining . 60

5.1. Solution Overview . 61

5.2. Resource Layer (Infrastructure) Interface . 64

5.3. Application Packaging. 64

5.4. Execution Management Service (EMS) . 68

5.5. Application Deployment and Execution Service (ADES). 70

5.6. Processing Service Data Access . 72

5.6.1. User Authorization Context . 76

5.7. WPS-T REST/JSON . 76

5.8. Interactive (Graphical) Applications . 78

5.9. Parallel Processing . 79

5.10. Processor Development Environment (PDE) . 79

5.11. Interactive Analysis Tool . 80

6. Resource Management . 81

6.1. Resource Catalogue . 83

6.1.1. CEOS OpenSearch Best Practise. 84

6.1.2. Application Catalogue . 84

6.1.3. Data Catalogue. 84

6.1.3.1. Metadata Organisation . 85

6.1.3.2. Example Usage with OpenSearch . 85

6.1.3.3. Data Access . 85

6.1.3.4. Catalogue Composition/Aggregation. 86

6.1.4. Federated Discovery. 87

6.2. Data Access Services . 88

6.3. Data Access Gateway . 88

EOEPCA
Master System Design Document

iii EOEPCA.SDD.001
Issue Draft for 1.1

6.4. Data Access Library (DAL) . 89

6.5. Data Ingestion . 90

6.6. Workspace . 90

7. Platform API . 92

7.1. Service API . 93

7.1.1. Platform Capabilities . 93

7.1.2. authentication . 94

7.1.3. billing . 94

7.1.4. data_search. 94

7.1.5. data_catalogue . 94

7.1.6. app_search . 94

7.1.7. map. 94

7.1.8. tile . 95

7.1.9. feature . 95

7.1.10. coverage . 95

7.1.11. datacube . 95

7.1.12. object_store . 95

7.1.13. ems . 96

7.1.14. ades . 96

7.1.15. workspace. 96

7.2. Client Library. 96

7.2.1. Client Library Concept Illustration. 97

8. Web Portal . 100

EOEPCA.SDD.001
Issue Draft for 1.1

iv EOEPCA
Master System Design Document

EO Exploitation Platform Common Architecture
Master System Design Document
EOEPCA.SDD.001

COMMENTS and ISSUES
If you would like to raise comments or issues on
this document, please do so by raising an Issue

at the following URL
https://github.com/EOEPCA/master-system-

design/issues.

PDF
This document is available in PDF format here.

EUROPEAN SPACE AGENCY CONTRACT
REPORT

The work described in this report was done
under ESA contract. Responsibility for the

contents resides in the author or organisation
that prepared it.

TELESPAZIO VEGA UK Ltd
350 Capability Green, Luton, Bedfordshire, LU1

3LU, United Kingdom.
Tel: +44 (0)1582 399000

www.telespazio-vega.com

AMENDMENT HISTORY

This document shall be amended by releasing a new edition of the document in its entirety.
The Amendment Record Sheet below records the history and issue status of this document.

Table 1. Amendment Record Sheet

ISSUE DATE REASON

1.1 InProgress Updates during development of Reference Implementation

1.0 02/08/2019 Issue for domain expert ITT

0.6 18/07/2019 Added XACML description + PDF template modifications

0.5 09/07/2019 Added Client Library + Billing

0.4 21/06/2019 Added Platform API

0.3 13/05/2019 Added content for Processing & Chaining and Resource
Management

0.2 25/04/2019 Re-work IAM approach

0.1 24/04/2019 Initial in-progress draft

EOEPCA
Master System Design Document

1 EOEPCA.SDD.001
Issue Draft for 1.1

https://github.com/EOEPCA/master-system-design/issues
https://github.com/EOEPCA/master-system-design/issues
EOEPCA-master-system-design.pdf
http://telespazio-vega.com/

Chapter 1. Introduction

1.1. Purpose and Scope
This document presents the Master System Design for the Common Architecture.

1.2. Structure of the Document
Section 2 - Context

Provides the context for Exploitation Platforms within the ecosystem of EO analysis.

Section 3 - Design Overview

Provides an overview of the Common Architecture and the domain areas.

Section 4 - User Management

Describes the User Management domain area.

Section 5 - Processing and Chaining

Describes the Processing & Chaining domain area.

Section 6 - Resource Management

Describes the Resource Management domain area.

Section 7 - Platform API

Describes the Platform API, covering all domain areas.

Section 8 - Web Portal

Describes the Web Portal, covering all domain areas.

1.3. Reference Documents
The following is a list of Reference Documents with a direct bearing on the content of this
document.

Reference Document Details Version

[EOEPCA-UC] EOEPCA - Use Case Analysis
EOEPCA.TN.005
https://eoepca.github.io/use-case-analysis

Issue 1.0,
02/08/2019

[EP-FM] Exploitation Platform - Functional Model,
ESA-EOPSDP-TN-17-050

Issue 1.0,
30/11/2017

[TEP-OA] Thematic Exploitation Platform Open Architecture,
EMSS-EOPS-TN-17-002

Issue 1,
12/12/2017

EOEPCA.SDD.001
Issue Draft for 1.1

2 EOEPCA
Master System Design Document

https://eoepca.github.io/use-case-analysis

Reference Document Details Version

[WPS-T] OGC Testbed-14: WPS-T Engineering Report,
OGC 18-036r1,
http://docs.opengeospatial.org/per/18-036r1.html

18-036r1,
07/02/2019

[WPS-REST-
JSON]

OGC WPS 2.0 REST/JSON Binding Extension, Draft,
OGC 18-062,
https://raw.githubusercontent.com/opengeospatial/wps-rest-
binding/develop/docs/18-062.pdf

1.0-draft

[CWL] Common Workflow Language Specifications,
https://www.commonwl.org/v1.0/

v1.0.2

[TB13-AP] OGC Testbed-13, EP Application Package Engineering Report,
OGC 17-023,
http://docs.opengeospatial.org/per/17-023.html

17-023,
30/01/2018

[TB13-ADES] OGC Testbed-13, Application Deployment and Execution
Service Engineering Report,
OGC 17-024,
http://docs.opengeospatial.org/per/17-024.html

17-024,
11/01/2018

[TB14-AP] OGC Testbed-14, Application Package Engineering Report,
OGC 18-049r1,
http://docs.opengeospatial.org/per/18-049r1.html

18-049r1,
07/02/2019

[TB14-ADES] OGC Testbed-14, ADES & EMS Results and Best Practices
Engineering Report,
OGC 18-050r1, http://docs.opengeospatial.org/per/18-
050r1.html

18-050r1,
08/02/2019

[OS-GEO-TIME] OpenSearch GEO: OpenSearch Geo and Time Extensions,
OGC 10-032r8,
http://www.opengeospatial.org/standards/opensearchgeo

10-032r8,
14/04/2014

[OS-EO] OpenSearch EO: OGC OpenSearch Extension for Earth
Observation,
OGC 13-026r9,
http://docs.opengeospatial.org/is/13-026r8/13-026r8.html

13-026r9,
16/12/2016

[GEOJSON-LD] OGC EO Dataset Metadata GeoJSON(-LD) Encoding Standard,
OGC 17-003r1/17-084

17-003r1/17-084

EOEPCA
Master System Design Document

3 EOEPCA.SDD.001
Issue Draft for 1.1

http://docs.opengeospatial.org/per/18-036r1.html
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/develop/docs/18-062.pdf
https://raw.githubusercontent.com/opengeospatial/wps-rest-binding/develop/docs/18-062.pdf
https://www.commonwl.org/v1.0/
http://docs.opengeospatial.org/per/17-023.html
http://docs.opengeospatial.org/per/17-024.html
http://docs.opengeospatial.org/per/18-049r1.html
http://docs.opengeospatial.org/per/18-050r1.html
http://docs.opengeospatial.org/per/18-050r1.html
http://www.opengeospatial.org/standards/opensearchgeo
http://docs.opengeospatial.org/is/13-026r8/13-026r8.html

Reference Document Details Version

[GEOJSON-LD-
RESP]

OGC OpenSearch-EO GeoJSON(-LD) Response Encoding
Standard,
OGC 17-047

17-047

[PCI-DSS] The Payment Card Industry Data Security Standard,
https://www.pcisecuritystandards.org/document_library?
category=pcidss&document=pci_dss

v3.2.1

[CEOS-OS-BP] CEOS OpenSearch Best Practise,
http://ceos.org/ourwork/workinggroups/wgiss/access/
opensearch/

v1.2,
13/06/2017

[OIDC] OpenID Connect Core 1.0,
https://openid.net/specs/openid-connect-core-1_0.html

v1.0,
08/11/2014

[OGC-CSW] OGC Catalogue Services 3.0 Specification - HTTP Protocol
Binding (Catalogue Services for the Web),
OGC 12-176r7,
http://docs.opengeospatial.org/is/12-176r7/12-176r7.html

v3.0,
10/06/2016

[OGC-WMS] OGC Web Map Server Implementation Specification,
OGC 06-042,
http://portal.opengeospatial.org/files/?artifact_id=14416

v1.3.0,
05/03/2006

[OGC-WMTS] OGC Web Map Tile Service Implementation Standard,
OGC 07-057r7,
http://portal.opengeospatial.org/files/?artifact_id=35326

v1.0.0,
06/04/2010

[OGC-WFS] OGC Web Feature Service 2.0 Interface Standard – With
Corrigendum,
OGC 09-025r2,
http://docs.opengeospatial.org/is/09-025r2/09-025r2.html

v2.0.2,
10/07/2014

[OGC-WCS] OGC Web Coverage Service (WCS) 2.1 Interface Standard -
Core,
OGC 17-089r1,
http://docs.opengeospatial.org/is/17-089r1/17-089r1.html

v2.1,
16/08/2018

[OGC-WCPS] Web Coverage Processing Service (WCPS) Language Interface
Standard,
OGC 08-068r2,
http://portal.opengeospatial.org/files/?artifact_id=32319

v1.0.0,
25/03/2009

EOEPCA.SDD.001
Issue Draft for 1.1

4 EOEPCA
Master System Design Document

https://www.pcisecuritystandards.org/document_library?category=pcidss&document=pci_dss
https://www.pcisecuritystandards.org/document_library?category=pcidss&document=pci_dss
http://ceos.org/ourwork/workinggroups/wgiss/access/opensearch/
http://ceos.org/ourwork/workinggroups/wgiss/access/opensearch/
https://openid.net/specs/openid-connect-core-1_0.html
http://docs.opengeospatial.org/is/12-176r7/12-176r7.html
http://portal.opengeospatial.org/files/?artifact_id=14416
http://portal.opengeospatial.org/files/?artifact_id=35326
http://docs.opengeospatial.org/is/09-025r2/09-025r2.html
http://docs.opengeospatial.org/is/17-089r1/17-089r1.html
http://portal.opengeospatial.org/files/?artifact_id=32319

Reference Document Details Version

[AWS-S3] Amazon Simple Storage Service REST API,
https://docs.aws.amazon.com/AmazonS3/latest/API

API Version
2006-03-01

1.4. Terminology
The following terms are used in the Master System Design.

Term Meaning

Admin User with administrative capability on the EP

Algorithm A self-contained set of operations to be performed, typically to achieve a
desired data manipulation. The algorithm must be implemented
(codified) for deployment and execution on the platform.

Analysis Result The Products produced as output of an Interactive Application analysis
session.

Analytics A set of activities aimed to discover, interpret and communicate
meaningful patters within the data. Analytics considered here are
performed manually (or in a semi-automatic way) on-line with the aid of
Interactive Applications.

Application Artefact The 'software' component that provides the execution unit of the
Application Package.

Application
Deployment and
Execution Service
(ADES)

WPS-T (REST/JSON) service that incorporates the Docker execution
engine, and is responsible for the execution of the processing service (as a
WPS request) within the ‘target’ Exploitation Platform.

Application Descriptor A file that provides the metadata part of the Application Package.
Provides all the metadata required to accommodate the processor within
the WPS service and make it available for execution.

Application Package A platform independent and self-contained representation of a software
item, providing executable, metadata and dependencies such that it can
be deployed to and executed within an Exploitation Platform. Comprises
the Application Descriptor and the Application Artefact.

Bulk Processing Execution of a Processing Service on large amounts of data specified by
AOI and TOI.

Code The codification of an algorithm performed with a given programming
language - compiled to Software or directly executed (interpretted)
within the platform.

Compute Platform The Platform on which execution occurs (this may differ from the Host or
Home platform where federated processing is happening)

EOEPCA
Master System Design Document

5 EOEPCA.SDD.001
Issue Draft for 1.1

https://docs.aws.amazon.com/AmazonS3/latest/API

Term Meaning

Consumer User accessing existing services/products within the EP. Consumers may
be scientific/research or commercial, and may or may not be experts of
the domain

Data Access Library An abstraction of the interface to the data layer of the resource tier. The
library provides bindings for common languages (including python,
Javascript) and presents a common object model to the code.

Development The act of building new products/services/applications to be exposed
within the platform and made available for users to conduct exploitation
activities. Development may be performed inside or outside of the
platform. If performed outside, an integration activity will be required to
accommodate the developed service so that it is exposed within the
platform.

Discovery User finds products/services of interest to them based upon search
criteria.

Execution The act to start a Processing Service or an Interactive Application.

Execution Management
Service (EMS)

The EMS is responsible for the orchestration of workflows, including the
possibility of steps running on other (remote) platforms, and the on-
demand deployment of processors to local/remote ADES as required.

Expert User developing and integrating added-value to the EP (Scientific
Researcher or Service Developer)

Exploitation Tier The Exploitation Tier represents the end-users who exploit the services of
the platform to perform analysis, or using high-level applications built-in
on top of the platform’s services

External Application An application or script that is developed and executed outside of the
Exploitation Platform, but is able to use the data/services of the EP via a
programmatic interface (API).

Guest An unregistered User or an unauthenticated Consumer with limited
access to the EP’s services

Home Platform The Platform on which a User is based or from which an action was
initiated by a User

Host Platform The Platform through which a Resource has been published

Identity Provider (IdP) The source for validating user identity in a federated identity system,
(user authentication as a service).

Interactive Application A stand-alone application provided within the exploitation platform for
on-line hosted processing. Provides an interactive interface through
which the user is able to conduct their analysis of the data, producing
Analysis Results as output. Interactive Applications include at least the
following types: console application, web application (rich browser
interface), remote desktop to a hosted VM.

EOEPCA.SDD.001
Issue Draft for 1.1

6 EOEPCA
Master System Design Document

Term Meaning

Interactive Console
Application

A simple Interactive Application for analysis in which a console interface
to a platform-hosted terminal is provided to the user. The console
interface can be provided through the user’s browser session or through
a remote SSH connection.

Interactive Remote
Desktop

An Interactive Application for analysis provided as a remote desktop
session to an OS-session (or directly to a 'native' application) on the
exploitation platform. The user will have access to a number of
applications within the hosted OS. The remote desktop session is
provided through the user’s web browser.

Interactive Web
Application

An Interactive Application for analysis provided as a rich user interface
through the user’s web browser.

Key-Value Pair A key-value pair (KVP) is an abstract data type that includes a group of
key identifiers and a set of associated values. Key-value pairs are
frequently used in lookup tables, hash tables and configuration files.

Kubernetes (K8s) Container orchestration system for automating application deployment,
scaling and management.

Login Service An encapsulation of Authenticated Login provision within the
Exploitation Platform context. The Login Service is an OpenID Connect
Provider that is used purely for authentication. It acts as a Relying Party
in flows with external IdPs to obtain access to the user’s identity.

Network of EO
Resources

The coordinated collection of European EO resources (platforms, data
sources, etc.).

Object Store A computer data storage architecture that manages data as objects. Each
object typically includes the data itself, a variable amount of metadata,
and a globally unique identifier.

On-demand Processing
Service

A Processing Service whose execution is initiated directly by the user on
an ad-hoc basis.

Platform (EP) An on-line collection of products, services and tools for exploitation of EO
data

Platform Tier The Platform Tier represents the Exploitation Platform and the services it
offers to end-users

Processing A set of pre-defined activities that interact to achieve a result. For the
exploitation platform, comprises on-line processing to derive data
products from input data, conducted by a hosted processing service
execution.

Processing Result The Products produced as output of a Processing Service execution.

Processing Service A non-interactive data processing that has a well-defined set of input data
types, input parameterisation, producing Processing Results with a well-
defined output data type.

EOEPCA
Master System Design Document

7 EOEPCA.SDD.001
Issue Draft for 1.1

Term Meaning

Products EO data (commercial and non-commercial) and Value-added products
and made available through the EP. It is assumed that the Hosting
Environment for the EP makes available an existing supply of EO Data

Resource A entity, such as a Product, Processing Service or Interactive Application,
which is of interest to a user, is indexed in a catalogue and can be
returned as a single meaningful search result

Resource Tier The Resource Tier represents the hosting infrastructure and provides the
EO data, storage and compute upon which the exploitation platform is
deployed

Reusable Research
Object

An encapsulation of some research/analysis that describes all aspects
required to reproduce the analysis, including data used, processing
performed etc.

Scientific Researcher Expert user with the objective to perform scientific research. Having
minimal IT knowledge with no desire to acquire it, they want the effort
for the translation of their algorithm into a service/product to be
minimised by the platform.

Service Developer Expert user with the objective to provide a performing, stable and
reliable service/product. Having deeper IT knowledge or a willingness to
acquire it, they require deeper access to the platform IT functionalities
for optimisation of their algorithm.

Software The compilation of code into a binary program to be executed within the
platform on-line computing environment.

Systematic Processing
Service

A Processing Service whose execution is initiated automatically (on behalf
of a user), either according to a schedule (routine) or triggered by an
event (e.g. arrival of new data).

Terms & Conditions
(T&Cs)

The obligations that the user agrees to abide by in regard of usage of
products/services of the platform. T&Cs are set by the provider of each
product/service.

Transactional Web
Processing Service
(WPS-T)

Transactional extension to WPS that allows adhoc deployment /
undeployment of user-provided processors.

User An individual using the EP, of any type (Admin/Consumer/Expert/Guest)

Value-added products Products generated from processing services of the EP (or external
processing) and made available through the EP. This includes products
uploaded to the EP by users and published for collaborative consumption

Visualisation To obtain a visual representation of any data/products held within the
platform - presented to the user within their web browser session.

Web Coverage Service
(WCS)

OGC standard that provides an open specification for sharing raster
datasets on the web.

EOEPCA.SDD.001
Issue Draft for 1.1

8 EOEPCA
Master System Design Document

Term Meaning

Web Coverage
Processing Service
(WCPS)

OGC standard that defines a protocol-independent language for the
extraction, processing, and analysis of multi-dimentional coverages
representing sensor, image, or statistics data.

Web Feature Service
(WFS)

OGC standard that makes geographic feature data (vector geospatial
datasets) available on the web.

Web Map Service
(WMS)

OGC standard that provides a simple HTTP interface for requesting geo-
registered map images from one or more distributed geospatial
databases.

Web Map Tile Service
(WMTS)

OGC standard that provides a simple HTTP interface for requesting map
tiles of spatially referenced data using the images with predefined
content, extent, and resolution.

Web Processing
Services (WPS)

OGC standard that defines how a client can request the execution of a
process, and how the output from the process is handled.

Workspace A user-scoped 'container' in the EP, in which each user maintains their
own links to resources (products and services) that have been collected
by a user during their usage of the EP. The workspace acts as the hub for
a user’s exploitation activities within the EP

1.5. Glossary
The following acronyms and abbreviations have been used in this report.

Term Definition

AAI Authentication & Authorization Infrastructure

ABAC Attribute Based Access Control

ADES Application Deployment and Execution Service

ALFA Abbreviated Language For Authorization

AOI Area of Interest

API Application Programming Interface

CMS Content Management System

CWL Common Workflow Language

DAL Data Access Library

EMS Execution Management Service

EO Earth Observation

EP Exploitation Platform

FUSE Filesystem in Userspace

GeoXACML Geo-specific extension to the XACML Policy Language

IAM Identity and Access Management

EOEPCA
Master System Design Document

9 EOEPCA.SDD.001
Issue Draft for 1.1

Term Definition

IdP Identity Provider

JSON JavaScript Object Notation

K8s Kubernetes

KVP Key-value Pair

M2M Machine-to-machine

OGC Open Geospatial Consortium

PDE Processor Development Environment

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

RBAC Role Based Access Control

REST Representational State Transfer

SSH Secure Shell

TOI Time of Interest

UMA User-Managed Access

VNC Virtual Network Computing

WCS Web Coverage Service

WCPS Web Coverage Processing Service

WFS Web Feature Service

WMS Web Map Service

WMTS Web Map Tile Service

WPS Web Processing Service

WPS-T Transactional Web Processing Service

XACML eXtensible Access Control Markup Language

EOEPCA.SDD.001
Issue Draft for 1.1

10 EOEPCA
Master System Design Document

Chapter 2. Context
The Master System Design provides an EO Exploitation Platform architecture that meets the service
needs of current and future systems, as defined by the use cases described in [EOEPCA-UC]. These
use cases must be explored under 'real world' conditions by engagement with existing
deployments, initiatives, user groups, stakeholders and sponsors within the user community and
within overlapping communities, in order to gain a fully representative understanding of the
functional requirements.

The system design takes into consideration existing precursor architectures (such as the
Exploitation Platform Functional Model [EP-FM] and Thematic Exploitation Platform Open
Architecture [TEP-OA]), including consideration of state-of-the-art technologies and approaches
used by current related projects. The master system design describes functional blocks linked
together by agreed standardised interfaces.

The importance of the OGC in these activities is recognised as a reference for the appropriate
standards and in providing mechanisms to develop and evolve standards as required in the
development of the architecture. In order to meet the design challenges we must apply the
applicable existing OGC standards to the full set of federated use cases in order to expose
deficiencies and identify needed evolution of the standards. Standards are equally important in all
areas of the Exploitation Platform, including topics such as Authentication & Authorization
Infrastructure (AAI), containerisation and provisioning of virtual cloud resources to ensure
portability of compute between different providers of resource layer.

Data and metadata are fundamental considerations for the creation of an architecture in order to
ensure full semantic interoperability between services. In this regard, data modelling and the
consideration of data standards are critical activities.

The system design must go beyond the provision of a standalone EO Exploitation Platform, by
intrinsically supporting federation of similar EO platforms at appropriate levels of the service stack.
The Network of EO Resources seeks, ‘to unite the available - but scattered - European resources in a
large federated and open environment’. In such a context, federation provides the potential to
greatly enhance the utilization of data and services and provide as stimulus for research and
commercial exploitation. From the end-user point of view, the federated system should present
itself as a single consolidated environment in which all the federated resources are made available
as an integrated system. Thus, the system design must specify federation-level interfaces that
support this data and service-level interoperability in such a way that is seamless to the end users.

The goal is to create an Integrated Data Exploitation Environment. Users will apply their workflows
close to the hosted data, supplemented by their own data. Processing outputs may be hosted as new
products that can themselves contribute to the global catalogue. This paradigm can then be
extended to encompass the federated set of Exploitation Platforms within the Network of EO
Resources. The result is a Federated, Integrated Data Analysis Environment.

A Reference Implementation of the full architecture will be developed to prove the concepts and
also to provide an off-the-shelf solution that can be instantiated by future projects to implement
their EO Exploitation Platform, thus facilitating their ability to join the federated Network of EO
Resources. Thus, the Reference Implementation can be regarded as a set of re-usable platform

EOEPCA
Master System Design Document

11 EOEPCA.SDD.001
Issue Draft for 1.1

services, in the context of a re-usable platform architecture.

EOEPCA.SDD.001
Issue Draft for 1.1

12 EOEPCA
Master System Design Document

Chapter 3. Design Overview
The overall system design has been considered by taking the ‘Exploitation Platform – Functional
Model’ [EP-FM] as a starting point and then evolving these ideas in the context of existing interface
standards (with some emphasis on the OGC protocol suite) and the need for federated services.

3.1. Domain Areas
The system architecture is designed to meet the use cases as defined in [EOEPCA-UC] and [EP-FM].
[EOEPCA-UC] makes a high-level analysis of the use-cases to identify the main system
functionalities organised into domain areas: 'User Management', 'Processing & Chaining' and
'Resource Management'. The high-level functionalities are often met by more than one domain
area, and User Management (specifically Identity & Access Management) cuts across all use cases,
and forms the basis of all access control restrictions that are applied to platform services and data.

Figure 1 depicts the domain areas as top level component blocks in a Platform ‘A’. The arrows may
be read as “uses”, each implying one or more service interfaces.

Figure 1. Top-level Architecture

A potential federation concept is represented by interactions between corresponding blocks in a
collaborating Platform ‘B’. The architecture aims to minimise dependencies and is conducive to the
principle of subcontracting the implementation to experts in the respective domains. The web
portal integrates various client components to form a rich user-facing interface. The Web Portal is
depicted as it has interfaces with the other domain areas - but it is not a priority concern for

EOEPCA
Master System Design Document

13 EOEPCA.SDD.001
Issue Draft for 1.1

the Common Architecture. Each exploitation platform would be expected to develop its own
web interfaces according to its needs.

3.1.1. User Management

Responsible for all aspects related to user identity, authentication, authorization, accounting and
billing in a federated system-of-systems environment.

It provides authentication, authorization and accounting services that are required to access other
elements of the architecture, including the processing-oriented services and resource-oriented
services. Individual resources may have an associated access and/or charging policy, but these have
to be checked against the identity of the user. Resource consumption may also be controlled e.g. by
credits and/or quotas associated with the user account. In the Network of EO Resources, a user
should not need to create an account on multiple platforms. Therefore some interactions will be
required between the User Management functions, whether directly or in directly via trusted third
party.

3.1.2. Processing and Chaining

Provides access to a variety of processing functions, tools and applications, as well as execution
environments in which to deploy them.

Provides a deployment and execution environment for processing tasks, analysis tools and
interactive applications. Supports the chaining of processing tasks in workflows whose execution
can include steps executed external to the origin exploitation platform. Handles and abstracts the
low-level complexities of the different underlying compute technologies, and ensures the compute
layer is scaled in accordance with current demand. Provides an integrated development
environment to facilitate development of new processing algorithms and applications. Facilitating
the network of EO resources by providing a federated interface to other processing services within
the wider EO network.

The development and analysis environment provides a platform for the expert user to develop
their own processing chains, experiments and workflows. It integrates with platform catalogue
services (for data, processing services and applications) for discovery of available published
datasets and processing elements. Subject to appropriate controls and permissions, the user can
publish their own processing services and results. Workflows can be executed within the context of
the processing facility, with the possibility to execute steps ‘remotely’ in collaborating platforms,
with the results being collected for the continuation of the workflow.

3.1.3. Resource Management

Responsible for maintaining an inventory of platform and federated resources, and providing services
for data access and visualisation.

Storage and cataloguing of all persistent resources. First and foremost, this will contain
multidimensional geo-spatial datasets. In addition it may include a variety of heterogeneous data
and other resources, such as documentation, Docker images, processing workflows, etc. Handles
and abstracts the low-level complexities of different underlying storage technologies and strategies.
Facilitating the network of EO resources by providing a federated interface to other data services

EOEPCA.SDD.001
Issue Draft for 1.1

14 EOEPCA
Master System Design Document

within the wider EO network.

The catalogue holds corresponding metadata for every published resource item in the local
platform storage, as well as entries for resources that are located on remote collaborating
platforms. Catalogue search and data access is provided through a range of standard interfaces,
which are used by the local Web Portal and Processing & Chaining elements and may be exposed
externally as web services.

Access to services and resources is controlled according to an associated authorization policy as
defined by the IAM approach. This component may interact with corresponding peer components
on other platforms - for example to synchronise catalogue entries.

The user has a personal workspace in which to upload files, organise links to resources of interest
(services/application/data), and receive/manage results output from processing executions. Shared
workspaces for collaboration can be similarly provisioned. The ingestion of new data is controlled
to ensure the quality of any published resource, including associated metadata, and to maintain the
integrity of the catalogue.

3.1.4. Platform API

Defines standard interfaces at both service and programmatic levels.

The Service API and its associated Client Library together present a standard platform interface
against which analysis and exploitation activities may be developed, and through which platform
services can be federated. The Platform API encourages interoperation between platforms and
provides a consistent and portable programming paradigm for expert users.

3.1.5. Web Portal

Presents the platform user interface for interacting with the local resources and processing facilities,
as well as the wider network of EO resources.

The Web Portal provides the user interface (themed and branded according to the owning
organisation) through which the user discovers the data/services available within the platform, and
the analysis environment through which they can exploit these resources. It provides a rich,
interactive web interface for discovering and working with all kinds of resources, including EO
data, processing and documentation. It includes web service clients for smart search and data
visualisations. It provides a workspace for developing and deploying processing algorithms,
workflows, experiments and applications, and publishing results. It includes support and
collaboration tools for the community.

Web Portal integrates together various web service clients that uses services provided by the
specialist domains (Processing, Resource, User) on the local platform and collaborating platforms.

EOEPCA
Master System Design Document

15 EOEPCA.SDD.001
Issue Draft for 1.1

3.2. Architecture Layers
Figure 2 provides a simplified architectural view that illustrates the broad architecture layes of the
Exploitation Platform, presented in the context of the infrastructure in which it is hosted and the
end-users performing exploitation activities.

Figure 2. Architecture Layers

Resource Tier

The Resource Tier represents the hosting infrastructure and provides the EO data, storage and
compute upon which the exploitation platform is deployed.

Platform Tier

The Platform Tier represents the Exploitation Platform and the services it offers to end-users.
The layers comprising the Platform Tier are further described below.

Exploitation Tier

The Exploitation Tier represents the end-users who exploit the services of the platform to
perform analysis, or using high-level applications built-in on top of the platform’s services.

The Exploitation Platform builds upon the services provided by the hosting infrastructure -
specifically accessing its data holding and using its compute resources. The components providing
the EP services are deployed within the compute offering, with additional compute resources being
provisioned on-demand to support end-user analysis activities.

The EP’s services access the data resources through a Data Access Gateway that provides an

EOEPCA.SDD.001
Issue Draft for 1.1

16 EOEPCA
Master System Design Document

abstraction of the data access interface provided by the resource tier. This abstraction provides a
'standard' data access semantic that can be relied upon by other EP services - thus isolating specific
data access concerns of the resource tier to a single EP component.

The Processing Framework provides the environment through which processing services and
applications are executed in support of end-user analysis activities. It might be envisaged that some
built-in (common) processing functions are provided, but the main focus of the processing
framework is to support deployment and execution of bespoke end-user processing algorithms, and
interactive analysis. Access to the underlying data from the executing processes is marshalled
through the Data Access Gateway and its supporting Data Access Library.

The EP provides Catalogue services, so that end-users can discover and browse the resources
available in the platform and its federated partners. Thus, end-users can discover available
processing services and applications, and search for data available for inclusion in their analysis.

Data Services based upon open standards serve the clients of the Exploitation Platform for data
access and data visualisation. Access to the underlying data is made via the Data Access Gateway.

The Service API represents the public service interfaces exposed by the Exploitation Platform for
consumption by its clients. Covering all aspects of the EP (authentication, data/processing discovery,
processing etc.), these interfaces are based upon open standards and are designed to offer a
consistent EP service access semantic within the network of EO resources. Use of the network
(HTTP) interfaces of the Service API is facilitated by the Client Library that provides bindings for
common languages (Python, R, Javascript). The Client Library is a programmatic representation of
the Service API which acts as an abstraction of the Exploitation Platform and so facilitates the
development of portable client implementations.

The Exploitation Tier hosts the web clients with which the end-user interacts to conduct their
analysis/exploitation activities. These clients would typically utilise the Client Library in their
implementation. The Web IDE is an interactive web application that Experts use to perform
interactive research and to develop algorithms. The Command-line Client builds upon the Client
Library to provide a command-line tool that can be used, for example, to automate EP interactions
through scripts.

The Web Portal provides the main user interface for the Exploitation Platform. It would be
expected that each platform would provide its own bespoke portal implementation, and so is
beyond the scope of the Common Architecture. Nevertheless, the architecture and its service
interface must meet the needs anticipated by future exploitation platform implementations.
Similarly, the External Application represents web applications (external to the hosting
environment of the exploitation platform) that use the services of the EP via its Service API and
Client Library.

All user interactions with the services of the EP are executed within the context of a given user and
their rights to access resources, with associated resource usage billing. Thus, the Identity and
Access Management component covers all tiers in this layered model.

The focus of this design document is the Platform Tier, which is elaborated in subsequent sections
of the document:

EOEPCA
Master System Design Document

17 EOEPCA.SDD.001
Issue Draft for 1.1

Section User Management

This section adresses the main concerns of User Management which are user identity, access to
resources and billing for resource usage.

Section Processing and Chaining

This section covers application packaging and the Processing Framework through which
services/applications can be deployed in federated workflows.

Section Resource Management

This section covers resource discovery through catalogues that act as a marketplace for data,
services and applications. Resource Management ensures data is accessible through standard
interfaces that serve the processing framework, and public data services to visualise and
consume platform data.

Section Platform API

This section provides a consolidated decription of the service interface of the EP and its
associated client library, which together present a standard platform interface against which
analysis and exploitation activities may be developed, and through which platform services can
be federated.

EOEPCA.SDD.001
Issue Draft for 1.1

18 EOEPCA
Master System Design Document

Chapter 4. User Management

4.1. Functional Overview
In the context of the Common Architecture, User Management covers the following main functional
areas:

Identity and Access Management (IAM)

Identification/authentication of users and authorization of access to protected resources
(data/services) within the EP.

Accounting and Billing

Maintaining an accounting record of all user accesses to data/compute/services/applications,
supported by appropriate systems of credits and billing.

User Profile

Maintenance of details associated to the user that may be needed in support of access
management and billing.

These are explored in the following sub-sections.

Work In Progress

This section focuses on the WHAT functionality the design is meant to enable (tells
the story)
Each subsection:

• Focuses on specific areas of functionality

• Contains sequence and use case diagrams that support the interactions from
the point of view of third parties.

• Lists the related Building Blocks

4.1.1. Identity and Access Management (IAM)

The solution for IAM is driven by the need for Federated Identity and Authorization in the context
of a network of collaborating exploitation platforms and connected services. This federated
environment should facilitate an end-user experience in which they can use a single identity across
collaborating platforms (Single Sign-On), they can bring their own existing identity to the
platforms ('Login With' service), and platforms can access the federated services of other
platforms on behalf of the end-user (delegated access and authorization).

The goal of IAM is to uniquely identify the user and limit access to protected resources to those
having suitable access rights. We assume an Attribute Based Access Control (ABAC) approach in
which authorization decisions are made based upon access policies/rules that define attributes
required by resources and possessed (as claims) by users. ABAC is is seen as a more flexible
approach than Role Base Access Control (RBAC), affording the ability to express more sophisticated
authorizations rules beyond the role(s) of the user - and noting the fact that a role-based ruleset

EOEPCA
Master System Design Document

19 EOEPCA.SDD.001
Issue Draft for 1.1

could be implemented within an attribute based approach, (i.e. RBAC is a subset/specialisation of
ABAC).

User Management achieves this through:

• Unique user identification

• Access policy assignment to any given resource

• Using the access policy, determine:

◦ The set of attributes required to access the protected resource

◦ whether the user has the required attributes

For the Common Architecture, a separation of User Identification from Access Management is
established. User identity is federated and handled external to the platform. Within the Network of
EO Resources, resources held within an exploitation platform are made available to federated
partner platforms. Authorization policy is enforced within the platform at point of access, but the
access policy can be federated within the network of EO resources, leading to a system of federated
authorization.

• The identity is provided externally. The external IdP has no association to the exploitation
platform, and hence is not the appropriate place to administer attributes that relate to EP
resources

• The protected resources are under the custodianship of the exploitation platform and hence the
exploitation platform enforces the access policy decision

• The administrative domain for an access policy should should not be tied to an exploitation
platform, which facilitates the provision of federation and virtual organisations

Federation of services between exploitation platforms is an important goal of the Common
Architecture. Thus, the IAM design offers an approach through which user access is managed
between platforms, ensuring proper enforcement of access controls and billing.

Figure 3 presents the basic approach. At this stage it does not consider the case in which an
exploitation platform accesses resources in another platform on behalf of a user, (for example a
workflow step that is invoked on another platform). This is addressed in a later section. Users are
authenticated by redirection to an external identity provider, (their ‘home’ IdP). This returns the
authentication decision and some basic user information as required (such as name, email, etc.).

EOEPCA.SDD.001
Issue Draft for 1.1

20 EOEPCA
Master System Design Document

Figure 3. Identity and Access Management Overview

Each protected resource is fronted by its Policy Enforcement Point (PEP), which acts as filter that
will only permit access if the appropriate conditions are met. This decision is made according to a
set of rules that are under the control of and configured within the exploitation platform.

UMA Compliance

This section of text regarding PEP<→PDP interactions does not comply entirely
with the approach stated by the UMA Flow

The Login Service is provided as a common component that is utilised by each client application to
perform the authentication flow with the external IdPs, as a step prior to resource access. In the
case of an unauthenticated request that requires authentication, the PEP will initiate the Login
Service by redirection of the User’s originating request. The successful flow ultimately redirects
back to the PEP and so maintains the direct connection between the end-user agent and the
resource server. An alternative approach would be the use of an API Gateway to perform the role of
the PEP, acting as an intermediary between the end-user agent and the resource server. However,
this would have the effect of proxying the connection which can have an impact on data transfer
performance, which is of particular importance in the case of significant data volumes being
returned to the User.

The PEP interrogates the PDP for an authorization decision. The PEP sends a request that indicates
the pertinent details of the attempted access, including:

• Identity of end-user (subject)

• The API (path/version etc.) being accessed (resource)

• The operation (HTTP verb) being performed (action)

EOEPCA
Master System Design Document

21 EOEPCA.SDD.001
Issue Draft for 1.1

The Policy Decision Point (PDP) returns an authorization decision based upon details provided in
the request, and the applicable authorization policy. The authorization policy may delegate all or
part of the decision to external PDP(s) within the federated network. This represents a Federated
Authorization model and facilitates a model of shared resources and virtual organisations.

The authorization policy defines a set of rules and how they should be evaluated to determine the
policy decision. The rules are expressed through attributes. The policy is evaluated to determine
what attributes are required, and what attributes the user possesses. This evaluation extends
through external PDPs according to any federated authorization defined in the policy.

It should be additionally noted that the decision to allow the user access depends upon dynamic
'attributes', such as whether the user has enough credits to 'pay' for their usage, or whether they
have accepted the necessary Terms & Conditions for a given dataset or service. Thus, the PDP must
interrogate other EP-services such as 'Accounting & Billing' and 'User Profile' to answer such
questions.

Figure 4 provides an overview of the IAM Flow, (success case).

Figure 4. IAM Overview Flow

Flows marked <<redirect>> should be interpreted as flows between services that are made by
redirection through the User Agent. For brevity, the interface between the Login Service, the User

EOEPCA.SDD.001
Issue Draft for 1.1

22 EOEPCA
Master System Design Document

Agent and the External IdPs is simplified in Figure 4 - they are expanded in section Authentication.
It should also be noted that the flows with the External IdP will vary according to the protocol
required by the External IdP, (e.g. OAuth, SAML, etc.).

4.1.2. Authentication

The approach to user identity and authentication centres around the use of OpenID Connect. Each
Exploitation Platform maintains their own OIDC Provider through which tokens can be issued to
permit access to protected resources within the EP. The authentication itself is delegated to external
Identity Providers at the preference of the end-user wishing to reuse their existing identity
provision.

Authenticated Identity

The Login Service is an OpenID Connect Provider that provides a ‘Login With’ service that allows
the platform to support multiple external identity providers. The Login Service acts as a Relying
Party in its interactions with the external IdPs to establish the authenticated identity of the user
through delegated authentication.

The Login Service presents an OIDC Provider interface to its clients, through which the OIDC clients
can obtain Access Tokens to resources. The access tokens are presented by the clients in their
requests to resource servers (intercepted by PEP). The PEP (acting on behalf of the resource server)
relies upon the access token to establish the authenticated identity of the users making the
requests. Once the user identity is established, then the PEP can continue with its policy decision
(deferred to the PDP).

Thus, clients of the EP act as OIDC Clients in order to authenticate their users to the platform,
before invoking its services. Clients include the web applications that provide the UI of the
exploitation platform, as well as other external applications/systems (including other exploitation
platforms) wishing to use the services of the EP.

The Login Service acts as client (Relying Party) to each of the External IdPs to be supported and
offered as a ‘Login With’ option. The interface/flow with the External IdP is integrated into the OIDC
flow implemented by the Login Service. This includes prompting the user to discover their ‘home’
Identity provider. The interactions with the external IdP represent the ‘user authentication step’
within the OIDC flows. Completion of a successful authentication with the external IdP allows the
Login Service to issue the requested access tokens (depending on the flow used).

Figure 5 illustrates the basic user access flow, invoked through a web browser.

EOEPCA
Master System Design Document

23 EOEPCA.SDD.001
Issue Draft for 1.1

Figure 5. IAM Authentication Flow (Browser)

Federated User Access

Based upon the above authentication model, an EP could access the resources of another EP by
obtaining an access token through OIDC flows. However, considering that these EP→EP invocations
will typically be Machine-to-machine (M2M), then we need to consider how the end-user (resource
owner) is able to complete their consent. The User Management provides two possibilities:

1. The user pre-authorizes the EP→EP access in advance of the operation

2. Use of OIDC JWKS for trusted federation of identity between platforms

User Pre-authorization

EOEPCA.SDD.001
Issue Draft for 1.1

24 EOEPCA
Master System Design Document

Using the facilities of the Exploitation Platform, the user (perhaps via their User Profile
management console) initiates the authorization flow from one EP to another. The end result is that
the originating EP obtains delegated access to another EP on behalf of the user - with the resulting
access tokens being maintained within the user’s profile on the EP.

At the point where the EP needs to access a resource on another EP, then the access tokens are
obtained from the user’s profile and used as Bearer token in the resource request to the other EP.
Refresh tokens can be used to ensure that authorization is long-lived.

Conversly, the user’s profile at a given EP also provides the ability to manage any inward
authrosations they have granted to other EPs, i.e. ability to revoke a previous authorization by
invalidating the refresh token.

Possible use of OIDC JWKS Federation

OIDC provides a framework in which RPs and OPs can dynamically establish verifiable trust chains,
and so share keys to support signing and validation of JWTs.

Dedicated ‘federation’ endpoints are defined that allow an entity (such as RP or OP) to publish their
own Entity Statements, and to obtain Statements for other entities that are issued by trusted third-
parties within the federation. The metadata/signatures within the Entity Statements establish a
chain of trust that can be followed to known (trusted) Trust Anchors, and so the Entity Statements
and the included entity public keys can be trusted.

Thus, through this mechanism public keys can be shared to underpin the signing and validation of
JWTs.

Within an EP, when a resource server is executing a user’s request, it may need to invoke a
resource in another EP with which it is collaborating. The resource access to the other EP must be
made on behalf of the originating user.

The nominal solution is for the originating EP to act as an OIDC Client to interface with the Login
Service of the other EP, and so obtain the access token required to access the other resource. In this
case, it is possible that the resource access may be asynchronous to the end-user request and is not
made within the context of the end-user’s user agent.

OpenID Connect allows the use of the signed-JWT ID Token that can be carried through the calls
into and across resource servers. Through the facilities provided by JSON Web Key Set (JWKS), ID
Tokens can be verified and trusted by other platforms operating within the same JWKS key
hierarchy.

Thus, using the trusted ID Token, it may be possible follow an OIDC/OAuth flow from one EP to
another, in which the user is deemed to have a-priori authorized the third-party access. At this
point it is only the user’s identity that has been established, with the authorization decision subject
to the rules of the PDP/PEP of the remote system. The identified user could have appropriate a-
priori permissions (attributes) on the target resources to be granted access, (ref. ‘Federated
Attributes’) but, in case these are not considered sensible information, they can be provided within
the ID Token statement, therefore facilitating Authorization.

Thus, it is the ID of the user that has been passed machine-to-machine to facilitate the service

EOEPCA
Master System Design Document

25 EOEPCA.SDD.001
Issue Draft for 1.1

federation. This effectively achieves cross-EP single sign-on, without relying upon the user agent of
the end-user providing cookies to the other EP.

4.1.3. Authorization

Work In Progress

The Authorization aspects of the User Management Task should be fleshed out.
Main topics include:

• Expected Authorization Flow

• Types of Authorizations to support (i.e.: attribute-based, cost-based, license-
based)

• Authorization across platforms

The Authorization capabilities of an Exploitation Platform allow the End-Users and Resource
Owners to interact with the various Resource Servers deployed within the realm of the Platform.
The Exploitation Platform provides several capabilities to protect resources and authorize access
attempts directed at them

4.1.3.1. Access Policy Checks

At any point during the consumption of Platform resources, components or End-Users might
require to perform Policy Checks to verify access rights to a specific resource. The platform
provides an endpoint where requests can be made, referencing which End-User (if any) is accessing
the resource, and the resource unique identifier.

The platform performs all the policy checks associated with the uniquely identified resource, and
answers back with a "Permit" or "Deny" response.

4.1.3.2. Resource Protection Management

The Platform provides Resource Owners with the capability to define their own resource
references, which can later be assigned specific access policies on demand. Resource definition,
deletion and update operations allow the Platform to uniquely identify which resource is being
accessed and allow both accounting operations and the ability to pull all relevant policies to be
checked during an access attempt.

Resource Protection Management is achieved through the Resource API, as defined in section Policy
API.

4.1.3.3. Access Policy Management

Resource Owners can utilize Platform management endpoints to declare specific access policies in
the form of Policy Documents. These documents are stored in the Platform and contain references
to uniquely identified resources. Policies enable the usage of a wide variety of access constraint
types:

• Based on Ownership: Only the Resource Owner can access the resource being protected.

EOEPCA.SDD.001
Issue Draft for 1.1

26 EOEPCA
Master System Design Document

• Based on Access List: Only a pre-defined list of Platform users can access the resource.

• Based on Attributes: Only users with an attribute set to an specific value or set of values can
access the resource.

• Based on Time Windows: Only requests within the specified time window can be executed

• Etc.

4.1.3.4. End-User Context Propagation

After successful authorization of an End-User access request to a resource, Resource Servers can
choose to extract a minimal set of End-User information that provides context to the request. This
serves the purpose of enabling propagation of secondary requests necessary to correctly execute
the original one, allowing authorization enforcement of these secondary requests, and tracing them
back to the End-User as original "driver" of these.

Example

An End-User might execute a processing request that in turn requires the
processing environment to pull a remote dataset. This secondary action of
retrieving data happens behind the scenes but also requires user authorization.
The processing environment can choose to pull the End-User context from the
original request and propagate it to this required dataset request for authorization
purposes.

4.1.3.5. Policy Context Propagation

After successful authorization of an End-User access request to a resource, Resource Servers can
choose to extract a minimal set of Policy information that provides context for the request made
within the Platform. This allows the Resource Server to perform fine-grained access control on its
own, down to the actual contents of the response.

Example

An End-User might execute a GetCapabilities request which the Resource Server
wants to adapt to the visibility rights associated to each Process. The Resource
Server can choose to pull Policy Context from the original request and use it to
filter out specific processes from the resulting list.

4.1.4. Accounting and Billing

The platform accounts for resource use both within the platform and in other platforms via
federation. In addition, several inter-platform billing models are supported as defined in the use
cases, [EOEPCA-UC]. A number of principles must first be established:

• Actions are performed within the context of a 'billing identity', which may be different to the
user’s identity.

• Charges are the result of discrete 'billing events' occuring within a particular 'billing window'.
Pricing must consider all events within the window, not events individually (to support, for
example, tiered pricing).

EOEPCA
Master System Design Document

27 EOEPCA.SDD.001
Issue Draft for 1.1

• Different platforms may follow completely different pricing and billing models. The
architecture and federation messaging cannot assume any particular method of calculation or
for describing prices.

• Only the platform hosting it can accurately price the use of a licensed Resource or compute
resource.

• Costs may be estimated but the estimate is not required to be binding. Federated access can
never rely on binding estimates.

• Debts can only be created where there is a direct contractual relationship and opportunity for
credit control. A user can never owe money directly to another platform unless he has an
account with it.

• A platform prices in a single currency (but could choose to allow a user to settle a bill with
another currency). Different federated platforms may choose different currencies.

Billing Identities

A billing identity is a user identity for a user who has established a billing relationship with the
platform. A billing user may delegate chargeable service access to other users within the system,
permitting that user to use resources billed to the billing identity.

Individual platforms may choose models with varying complexity. For example, one platform may
require that the billing and user identity are always the same, whilst another may permit a user
working on multiple cross-organizational projects to choose the billing identity to use. Identities
may be related to organizations, projects, etc, for access control and credit control purposes - but
these relationships are not required by the architecture.

As required by their purpose, cross-platform messaging will include both the user id and the
relevant billing identity.

Combined usage of user and billing identities

Both the billing and user identities, and other information such as the location of
each one and the type of organization involved, may be relevant to determining
prices. This is because the place of supply for VAT purposes must be determined,
plus any discounts for, for example, academic use. Note that 'location' means more
than 'country' (eg, the Canary Islands have lower VAT than Madrid). Also, some
organizations may be treated differently such as international organizations
exempt from all tax.

Commercially Licensed Resources

Users may publish Resources which are licensed to others on commercial terms and use the
platform to collect payments. There are two types of charges which require support within User
Management: time-based and volume-based.

Time-based charges occur when a user requests a licence which costs a fixed price for a fixed time
(or is permanent), regardless of the accesses made to the Resource. The Data Access Services and
Execution Management Services determine when such a licence is required and the licence
manager manages the process for buying one, including emitting a billing event. This typically will

EOEPCA.SDD.001
Issue Draft for 1.1

28 EOEPCA
Master System Design Document

happen in advance of a request. The licence manager may give the billing service an opportunity to
reject the request, if applicable to the platform’s billing model.

Volume-based charges occur as access to a licensed Resource proceeds or completes (for example,
on first access to a specific satellite image or for each input image passed to a commercial machine
learning model). Again, the licence manager reports these as billing events when a licence
requirements check is made.

Pricing is specified by the Licenser (in a particular form supported by the platform) and stored by
the pricing engine (quantity to price mapping) and licence manager (method for determining
which licences and 'quantity'). The licence manager must emit three billing events when license
grants are bought: a charge to the user, a credit to the Licenser and a charge to the Licenser
representing the platform fee for handling payment processing.

Budgets

Work In Progress

The Budget aspects of the User Management Task are not addressed on this
document for the time being.

Inter-platform Payments

Three different models for federated availability of commercial services are supported, two of
which require support from the accounting and billing mechanisms of the platforms involved. This
support comes in the form of inter-platform payments, allowing users to pay for executions or
Resource licences which are located elsewhere in the federation.

Note that three platforms may be involved in providing a chargeable federated commercial service:

• The home platform where the user is registered and the action is initiated.

• The host platform where the licenced Resource or chargeable compute resource is located.

• The compute platform where processing occurs.

Consider, for example, a processing chain invoked on the home platform which invokes a
processing service running on the compute platform using a software container published by a
Licenser registered on the host platform. Frequently, two or more of these platforms are the same.
However, even if all three are the same the platform may wish to use the same process where
payments to a Licenser are involved.

Inter-platform Payment Model and Process

An inter-platform payment supports a User of one platform paying for a service provided by either
another platform or by a User of another platform. It’s important to repeat that a debt is only ever
created between two entities which have a legal relationship and an opportunity for credit control.
This requires that inter-platform payments involve two or three separate debts being: one from
User to home platform, one from home platform to the host platform and the third from the host
platform to the User providing the service (if any). The process must also cope with the price not
being known in advance in all cases - processing costs in particular may be unpredictable. To
support this, the following stages are involved:

EOEPCA
Master System Design Document

29 EOEPCA.SDD.001
Issue Draft for 1.1

• Authorization stage: This provides an opportunity for credit control decisions in advance of
debts being incurred. This establishes a maximum amount of debt before a new authorization
must be sought or the operation aborted but will not necessarily ever be owed in full. Both
home and host platform must agree to authorize an inter-platform payment (the host platform
may reject if it doesn’t believe the home platform will pay). The home platform may 'hold' some
account credit from its user or authorize a credit card payment if appropriate in its billing
model.

• Clearing stage: This occurs after a debt is legally incurred, such as after (some of) the
computation or data access is completed. The platform on which the service is provided, the
host platform, reports to the home platform how much debt has actually been incurred. It may
happen in stages - for example a large authorization may occur, followed by the clearing of
smaller amounts after every hour of compute time. It cannot exceed the amount authorized.

• Settlement stage: This involves a batch of multiple payments, such as a day or a month of
payments. The platforms with payment processing contracts in place must reconcile their
records and calculate a net amount owed (potentially in multiple currencies). They must then
settle the net debt by making a payment using the banking system.

Two different commercial models are supported: bilateral clearing and central clearing. In bilateral
clearing every platform must negotiate a contract with every other platform (or as far as possible -
incomplete coverage will limit what users can do). This has certain commercial downsides, such as
a need for every-pair auditing for accurate reporting of resource use and a danger of incumbents
excluding new entrants. In central clearing a clearing house must exist and all platforms form a
relationship with the clearing house. The clearing house technical functionality is not further
explored here, nor is the management of counterparty risk. The messaging and process is intended
to be the same in both models.

Where inter-platform payments are used the host platform is acting a subcontractor to the home
platform. Should the host platform fail to perform, a dispute resolution process must be used. This
is considered out of scope of the architecture, except that payments may be marked as disputed,
refunded or charged back. This must be accounted for during reconciliation between platforms.

Federated Commercial Services Without Inter-platform Payments: Direct Payments

If inter-platform payments are not available, for example because two platforms do not have a
payment agreement, it may still be possible to provide services across multiple platforms providing
the user has an account and billing relationship with each one directly. This requires that both
platforms recognize both the user and the selected billing identity, and that the billing user has
delegated access to the user in both platforms.

To handle direct payments the user must authorize the home platform to act on its behalf when
submitting requests to the host platform. This is done using OAuth. The home platform must
redirect the user to the host platform which then returns an authorization token to the home
platform. Federated platforms must run an OAuth endpoint for this purpose and certain
restrictions must be put on its functioning (for example on refresh token lifetime).

Other system components must then use an access token when making requests to the host
platform. The host platform should still report costs and identifiers to the home platform, which
must be passed to the Billing Service to be recorded. This aids dispute resolution and the reporting

EOEPCA.SDD.001
Issue Draft for 1.1

30 EOEPCA
Master System Design Document

of total costs for particular requests.

Estimating Inter-platform Costs

Work In Progress

Estimation of Inter-platform costs is not addressed in this document for the time
being.

Relationship to System Components

The Billing Service handles inter-platform payments and supports direct payments in response to
requests from other components, such as the EMS. The direct payment model is very different to
inter-platform payments but knowledge of the distinction and when each should be used should be
isolated in the Billing Service as much as possible.

To support this for volume-based charges, interaction between other system components and the
Billing Service proceeds as follows:

• Prior to federated resource use, a component must make a request to the Billing Service with
the estimated cost (or a fixed value if not available) and the identity of the host platform. It must
also include the transaction ID for the user action which resulted in the payment.

• The Billing Service determines what kind of payment handling is available, if any. It returns
success or failure and, optionally, an OAuth URL to authorize direct payment.

• The component proceeds with its activity, incurring charges. The activity occurs on the compute
platform, which may also be the home or host platform.

• The compute platform seeks authorization from the host platform before charges are incurred.
The host platform checks that an authorized payment exist (directly between the home and host
platform). If the charge is for compute resources then these are the same platform and may be a
no-op, but this may not be the case for computation using licensed data or software.

• If the compute platform seeks access from a host platform which has no authorized payment in
place then it must report this to the home platform. The home platform may then request
authorization or abort the processing. This may happen if the home platform cannot fully
predict the accesses made during computation.

• The compute platform computes, incurring charges. The compute platform may also access the
host platform to retrieve data or software but this may also be cached. The resource use is
reported by the compute platform to the host platform - for example, a list of images accessed or
processed. This happens in multiple chunks when charges are incurred over time.

• The host platform clears pieces of the original inter-platform authorization by sending a
clearing request directly to the home platform. Note that only the host platform is considered
authoritative for calculating the true cost (which is returned here).

• If the original authorization is exhausted then the home platform may pre-emptively extend it
by creating a new payment (with the same transaction ID). Otherwise the host platform must
reply to a charge report from the compute platform with a response prohibiting further
charges.

• On receiving such a message the compute platform must suspend further processing and

EOEPCA
Master System Design Document

31 EOEPCA.SDD.001
Issue Draft for 1.1

forward the response to the home platform. The home platform must then either seek a new
authorization or send an abort message to the compute platform.

For time-based licences the flow can be simpler:

• The component requests payment authorization from the Billing Service, specifying an exact
price.

• The component communicates with the host platform to acquire the licence.

• The host platform sends a payment clearing message to the home platform Billing Service to
clear the entire authorization.

Payment Processing Systems

Payment processing itself, in particular card payment processing, may be initiated by the Billing
Service but should be strictly separate from it. [PCI-DSS] imposes many onerous requirements not
just on the software and hardware used for payment processing, but also on the wider organization
and its processes (for example, for formal change reviews and code reviews, the use of specialist
cryptographic hardware security modules, the separation of duties between staff and requirements
in recruitment and training). For these reasons some implementers will need to avoid card
processing within the system entirely and redirect users to externally hosted payment servers. This
may constrain them to an account credit-based model whilst other providers may be able to initiate
an authorization or full payment on-demand.

4.1.5. User Management

The User Profile is a system resource that maintains a set of data for each user including:

• User details

• Terms and conditions accepted by the user

• Licence keys held by the user

• User API key management

The User Profile for a given user is tied to the unique identifier provided by their Home-IdP through
the authentication process. A front-end solution is put in place to facilitate User Profile edition and
the ability yo exercise GDPR related rights (i.e. right to be forgotten).

4.1.6. Licence and T&C Management

A licence manager must determine whether or not licence requirements permit certain actions by a
certain user. For freely available resources simple acceptance of the licence may be necessary. For
commercially licensed resources it may be much more complicated. For example, a licence may
have been bought for non-educational use by up to 5 users for satellite images with a certain
resolution and area, with an extra charge made for images less than 15 degrees off nadir.
Alternatively, a commercially licensed processing service may be charged by the CPU-hour or user-
month. This is handled by the pricing and billing services, but acceptance of these terms must still
be made first.

Some concepts applicable within the licence manager must be established:

EOEPCA.SDD.001
Issue Draft for 1.1

32 EOEPCA
Master System Design Document

• A licence consist of the legal text itself, a name and version, a description of pricing where
appropiate and other metadata.

• A licence terms acceptance is the acceptance by a particular user (and organization) of the
licence terms and conditions.

• A licence grant grants a users access to particular parts of a resource or for particular purposes.
This is only applicable to commercial licensed resources. A licence grant is signed by the
licenser.

• The licence manager does not know which resources require which licences. It only knows data
about identified licences and about which users have which acceptances and grants.

The licence manager does not formally know how to calculate the price of a commercial licence
grant. Instead, it produces an identifier for a particular type of grant and a quantity. The billing
engine turns this in to a price, which may involve applying any user-specific or volume-based
discounts. The quantity may be in, for example, square kilometres. Alternatively, the licences may
be priced at €1/unit, effectively transferring responsibility to the licence manager’s configuration.

Note that licencers must ensure that their licences are uniquely identified across the whole
federation. That is, if they use the same licence on multiple platforms they must give it the same ID
and must not otherwise reuse IDs.

Licence Requirement Checks

At the request planning stage the EMS determines the licences required (as far as is possible in
advance). This results in a list of licence requirement specifications. These may vary in complexity,
from simply identifying a dataset to specifying an AoI, ToI and additional attributes, depending on
platform support and on any knowledge the EMS has about which request fields are licence-
relevant. The licence manager, however, only performs matching of these against rules or
configuration using no or limited knowledge of the specific meaning of fields.

On receiving licence requirement specifications, the licence manager must compare them against
the licences and grants possessed by the user and determine what licences, if any, must be obtained
by the user before the action is permitted. On failure, the result should contain something the user
can act on, such as a URL for viewing and agreeing to dataset terms or for buying licences. On
success, the licence manager may return information on which fields were used so that the EMS
can avoid repeated checks.

The licence manager is also able to determine when additional commercial licence grants should be
added (and charged for) automatically. The user must have previously agreed to the license terms
and pricing. When a new licence grant is added it should record it and issue a billing event.

Licence grants may also be managed by an external service operated by the licenser. This
communication is managed entirely by the licence manager.

Processing may cross platform boundaries within the federation. A platform executing processing
or supplying a resource must be able to determine that the processing is running in a context in
which any required licences are available. To support this, the context must include enough
information to identify the licence manager of the originating platform. When a licence manager
receives a licence requirement specification which can’t be satisfied locally it should use this

EOEPCA
Master System Design Document

33 EOEPCA.SDD.001
Issue Draft for 1.1

endpoint to perform a licence requirement check. The originating platform may fail this request,
may accept it based on existing data (returning signed licence grants if appropriate) or may
perform an automated licence grant acquisition. The host/compute platform may then store these
licence grants against the user ID for use in future checks.

Note that cross-platform executions may involve running, for example, a processing chain initiated
from platform A with a component involving a commercially licenced compute service from
platform B running on platform C. In these cases platform B may check that the user has accepted
its platform acceptable use policy by contacting platform A, fetch the compute service from
platform C which will then also directly contact platform A to ensure that licences are available
before returning the container ot platform B.

Work In Progress

Sequence diagrams that represent these interactions will be provided within this
section.

Licence Acquisition

Unless managed by an external service, users must be able to view and accept terms and purchase
licence grants using the licence manager. For licences where no licence grants must be bought this
is very simple - for example, the licence manager may provide APIs enabling the UI to fetch licence
text and submit acceptance. This can be done from a resource information display page or
following a refused request.

Where a licence grant must be bought the flow for the user is managed by other components. A
user interface may be used to choose licence attributes or particular subsets of data, for example,
or a user may have the option to allow automatic purchases as data is accessed. This licence
manager must support this functionality in the following ways:

• A human-readable description of the pricing model and prices is included with the licence
metadata. This should be displayed to the user.

• The licence manager can accept a licence requirement specification and turn it in to either a
product code and quantity (which the caller can then pass to the pricing engine) or information
on which additional fields are required. The field names, types and UI information is supplied
by other services as part of the resource definition.

• The licence manager can accept a command to buy a specified licence. It will then emit a billing
event. This may happen synchronously or asynchronously depending on the needs of the
platform’s billing model.

When federated access is involved, such as when a processing chain runs some components on
another platform or when data or processing services are transferred to run locally, a user may
need to accept licence terms or acquire a licence grant for a resource which is not published via the
home platform. This must always be initiated from the home platform, either in advance of the
execution or in response to an event returned by a host platform. For terms acceptance the licence
manager must contact the host platform and transfer the necessary T&C data. For a (commercial)
licence grant, the licence manager must ask the billing manager to authorize a payment to the host
platform and then make a request to the host licence manager to buy the licence (specifying the
payment ID). The host licence manager must verify the price before asking its own billing manager

EOEPCA.SDD.001
Issue Draft for 1.1

34 EOEPCA
Master System Design Document

to clear the payment. It should then record the licence grant as well as returning it to the home
platform.

Licence Administration

Resource owners must be able to configure licences. The UIs and APIs allowing them to do this must
interact with the licence manager (and the pricing engine) to configure their licences. This includes
only the licences themselves - assignment of licence requirements to resources is out of the licence
manager’s scope.

Porting Licences Within the Federation

In some cases users may have multiple home platforms, initiating some workloads from different
locations. To ensure that users can use their licences for workloads initiated across all locations
licence 'porting' may be used.

A user 'ports' a licence from one platform to another by using OAuth to authorize the licence
manager on the local platform to access his licences on another. This is only permitted if the
licences have been marked as 'portable' by the licenser.

This mechanism may be used for two purposes. In the first, a publisher has published his Resource
in both platforms (which may be done to permit lower processing latencies, lower payment
processing costs or the use of proprietary features). The platform receiving the licence must verify
its signature using the licenser’s public key before accepting it. In the second case the Resource is
not available on the receiving platform but may still be used in cross-platform workflows
(including the case when a processing service is transferred from a remote host platform to execute
locally).

EOEPCA
Master System Design Document

35 EOEPCA.SDD.001
Issue Draft for 1.1

4.2. Architecture Overview

Work In Progress

This section focuses on HOW the functionality is provisioned, and how the
building blocks are connected to each other.
Each building block contains:

• Description of functionality

• Used technologies and Standards

• List of interactions with other Building Blocks

• List of exposed endpoints (indicating which are exposed at API Platform level)

4.2.1. Login Service

The Login Service is an OIDC Provider that provides a ‘Login With’ service that allows the end-user
to select their Identity Provider for purposes of authentication.

The Login Service is designed to support the onward forwarding of the authentication request
through external identity services, which should be expected to include:

• EduGain

• GitHub

• Google

• Twitter

• Facebook

• LinkedIn

• Others (to be defined)

The Login Service must establish itself as a client (Relying Party) of all supported external IdPs,
with appropriate trust relationships and support for their authentication flows.

The primary endpoints required to support the OIDC flows are as follows (these endpoints are
taken, by example, from OKTA OIDC discovery metadata, https://micah.okta.com/oauth2/
aus2yrcz7aMrmDAKZ1t7/.well-known/openid-configuration):

authorization_endpoint (/authorize)

To initiate the authentication, and to return the access tokens / code grant (depending on flow).

token_endpoint (/token)

To exchange the code grant for the access tokens.

userinfo_endpoint (/userinfo)

To obtain the user information ID token in accordance with the scopes requested in the
authorization request.

EOEPCA.SDD.001
Issue Draft for 1.1

36 EOEPCA
Master System Design Document

https://micah.okta.com/oauth2/aus2yrcz7aMrmDAKZ1t7/.well-known/openid-configuration
https://micah.okta.com/oauth2/aus2yrcz7aMrmDAKZ1t7/.well-known/openid-configuration

jwks_uri (/keys)

To obtain signing keys for Token validation purposes.

end_session_endpoint (/logout)

To logout the user from the Login Service, i.e. clear session cookies etc. Although, given that the
actual IdP is externalised from the Login Service, it would remain the case that any session
cookies maintained by the external IdP would still be in place for a future authentication flow.

introspection_endpoint (/introspect)

Used by clients to verify access tokens.

revocation_endpoint (/revoke)

Used for (refresh) token revocation.

As described in section ‘Discovery’, the following endpoints relate to Discovery:

OIDC Discovery (/.well-known/openid-configuration)

Dynamic discovery of OIDC endpoints by clients.

As described in section ‘Client Registration’, the following endpoints relate to Dynamic Client
Registration:

registration_endpoint (/clients)

Dynamic registration of clients (Authentication Agents).

As described in section ‘Federation’, the following endpoints relate to the establishment of a
federation of collaborating Exploitation Platforms through a dynamic trust model:

/.well-known/openid-federation

OIDC Federation API endpoint through which Entity Statements are published about itself and
other entities (such as other Exploitation Platforms). See section ‘Federation’.

4.2.1.1. OIDC ID Token

The ID Token is a JWT that is returned to from the /userinfo endpoint of the Login Service. The
returned OIDC ID Token has been signed (JWS) by the Login Service and thus results in a token that
asserts a user’s authenticated identity with integrity, and non-repudiation.

4.2.1.2. OIDC Clients

Clients are Relying Parties that act on behalf of users accessing the services of the Exploitation
Platform. They will either pre-emptively obtain their access token for required resources, or will
attempt resource access and be redirected by exception to the OIDC Provider authentication flow.

In the case of a web application (browser hosted), the Implicit Flow would be used. In other cases,
where possible, the Authorization Code Flow would be preferred.

The OIDC flows are initiated with the appropriate response_type (‘id_token token’ for Implicit Flow,
‘code’ for Authorization Code Flow) and scope of ‘oidc profile’.

EOEPCA
Master System Design Document

37 EOEPCA.SDD.001
Issue Draft for 1.1

At the successful conclusion of the flow the client receives the Access Token and ID Token. The
Access Token is then used by the client as a Bearer token in its subsequent calls to access the EP
resources.

4.2.1.3. Additional OIDC Capabilities

OpenID Connect provides some additional functionalities that are of interest in the context of the
Common Architecture.

OIDC Discovery

Reference: https://openid.net/specs/openid-connect-discovery-1_0.html

OpenID Connect makes provision for two types of discovery:

1. Discovery of the OpenID Provider Issuer based upon the user’s identifier

2. Discovery of the OpenID Provider Configuration Information

In the case of our usage within the Exploitation Platform, type 1) is not application since the user’s
ID comes from their ‘Home’ organisation and is not (necessarily) tied to an OpenID Connect
Provider. Instead the Login Service must implement a discovery ‘flow’ in which the user is able to
select the provider of their identity, as one that is supported by the Login Service deployment.

Regarding discovery type 2), the Login Service exposes an OIDC Provider interface, and this should
support retrieval of OIDC Provider Configuration Information. Thus, OIDC Clients can utilise the
discovery interface of the Login Service to exploit its services.

This is of most interest in the case of access to federated resources in other EPs, where a resource
server in one EP may be acting as an OIDC client of the Login Service in another EP – in which case
auto-discovery might be more attractive.

Client Registration

Reference: https://openid.net/specs/openid-connect-registration-1_0.html

The possibility exists for the OIDC Client (Login Service) to perform auto-registration with the Login
Service, using OIDC Client Registration. In doing so the OIDC client obtains its Client ID and Secret.

This may be of interest in a couple of cases:

• The case of access to federated resources in other EPs, where a resource server in one EP may
be acting as an OIDC client of the Login Service in another EP – in which case auto-client-
registration might be of interest.

• The case where a common Login Service is deployed outside of the context of a given
Exploitation Platform, acting as an IdP Proxy. In this case, the local Login Service deployed in
each EP would register as an OIDC Client of the IdP Proxy.

4.2.1.4. SCIM Endpoints

EOEPCA.SDD.001
Issue Draft for 1.1

38 EOEPCA
Master System Design Document

https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html

Work In Progress

This section will contain a description of SCIM and its the usage within the
architecture.

4.2.1.5. Interaction with other components

While the external interactions of the Login Service with client applications and End-Users are
clearly stated (see figure Figure 4), this Building Block exposes several endpoints, mostly for their
usage within the platform:

• SCIM Provider, allowing access to the back-end schema that stores information required to
provide platform functionality.

• OIDC Provider, allowing authentication of SW components as trusted SCIM Clients.

Interal usage of Endpoints

Most of the other building blocks described in the User Management section will utilize the SCIM
Endpoint for various purposes. In order to do so, they will be authenticated as trusted SCIM Clients,
therefore requiring interaction with the exposed OIDC and UMA Endpoints.

Work In Progress

Add image for client authentication

4.2.2. Policy Decision Point

The Authorization flow is relevant to the following interfaces:

• PEP <→ PDP
The PEP, acting as a filter for the access attempt on the resource, defers its authorization
decision to the PDP.

• PDP <→ Other PDP
Aspects of the authorization policy can be delegated from one PDP to another, e.g. to govern
resource access through an administrative domain represented by a Virtual Organisation.

The approach (data model and protocol) for these two interfaces can be aligned - but is not yet
defined in the Common Architecture. At this stage the candidate technologies to be investigated are:

• XACML (eXtensible Access Control Markup Language)

• UMA (User-Managed Access)

XACML and UMA can possibly be used together in an overall solution in which XACML provides
the policy language through which rules are configured and UMA provides the ‘protocol’ flows.

4.2.2.1. XACML (eXtensible Access Control Markup Language)

XACML defines an architecture in which the access decision is separate from the point of use, and is
thus consistent with the high-level IAM approach described in this design document. The XACML
architecture framework describes a Request-Response protocol, and a policy language in which

EOEPCA
Master System Design Document

39 EOEPCA.SDD.001
Issue Draft for 1.1

access policies are defined as rules comprising attributes. XACML additionally describes the process
through which policies are evaluated, for example through combining algorithms that mediate
competing rules.

XACML 3.0

XACML 3.0 includes some additional aspects that are of interest to our proposed IAM approach.
Namely:

Administrative delegation

The delegation mechanism is used to support decentralized administration of access policies. It
allows an authority (delegator) to delegate all or parts of its own authority, (or someone else’s
authority), to another user (delegate) without any need to involve modification of the root policy.

JSON Request/Response Profile

JSON bindings for the request/response messages between the PEP and the PDP - as an
alternative to the core XML message definitions.

REST Profile

Providing REST semantics for the PEP/PDP interface.

GeoXACML

GeoXACML is standardised by the OGC to provide a geo-specific extension to XACML 2.0. GeoXACML
provides support for spatial data types and spatial authorization decision functions. Those data
types and functions can be used to define additional spatial constraints for XACML based policies.

EOEPCA.SDD.001
Issue Draft for 1.1

40 EOEPCA
Master System Design Document

XACML Related Technologies

The following items represent some interesting existing implementations that may
be considered as a possible basis for a reference implementation of the Common
Architecture.

AuthzForce PDP

An authorization service providing authorization policy decision evaluation
and policy administration.
Provides an API to get authorization decisions based on authorization policies,
and authorization requests from PEPs. The API follows the REST architecture
style, and complies with XACML v3.0.

• Project page: https://fimac.m-iti.org/6d.php

• Documentation: https://authzforce-ce-fiware.readthedocs.io/en/latest/

geoPDP

GeoXACML for AuthzForce PDP - extends the AuthZForce PDP implementation
with a Geometry data type and related functions as specified in the OGC
Implementation Standard GeoXACML 1.0.1.

• GitHub page: https://github.com/securedimensions/authzforce-geoxacml-
basic

• geoPDP Docker: https://github.com/securedimensions/geopdp-docker

geoPEP

Related to the geoPDP is the geoPEP that delivers a PEP as an Apache2 reverse
proxy - implemented as an Apache2 module - interfacing with the geoPDP for
the authorization decisions.

• geoPEP Docker: https://github.com/securedimensions/geopep-apache2-
reverse-proxy

4.2.2.2. UMA (User-Managed Access)

User-Managed Access (UMA) is a profile of OAuth 2.0. UMA defines how resource owners can
control protected-resource access by clients operated by arbitrary requesting parties, where the
resources reside on any number of resource servers, and where a centralized authorization server
governs access based on resource owner policies. Resource owners configure authorization servers
with access policies that serve as asynchronous authorization grants.

UMA Main Actors

The main UMA actors are briefly summarised as follows:

Resource Owner (RO)

The "user" and the owner of the resource who defines the access authorization - typically the
end-user, but it can also be a corporation or other legal person.

EOEPCA
Master System Design Document

41 EOEPCA.SDD.001
Issue Draft for 1.1

https://fimac.m-iti.org/6d.php
https://authzforce-ce-fiware.readthedocs.io/en/latest/
https://github.com/securedimensions/authzforce-geoxacml-basic
https://github.com/securedimensions/authzforce-geoxacml-basic
https://github.com/securedimensions/geopdp-docker
https://github.com/securedimensions/geopep-apache2-reverse-proxy
https://github.com/securedimensions/geopep-apache2-reverse-proxy

Client

An application making protected resource requests with the Resource Owner’s authorization
and on the Requesting Party’s behalf - typically a web or native application.

Resource Server (RS)

The custodian of the resource - typically a service through which access to the resource is
gained.

Authorization Server (AS)

A server that issues Authorization Data and RPTs to a client and protects resources managed at a
resource server. Authorization Data is associated with an RPT to enable some combination of the
Authorization Server and Resource Server to determine the correct extent of access to allow to a
Client.

Requesting Party (RqP)

The entity that uses a Client to seek access to a protected resource. May be the Resource Owner,
or can be some other third party entity requesting access to the resource.

The software components that fill the roles of UMA authorization servers, resource servers, and
clients respectively are intended to work in an interoperable fashion when each is operated by an
independent party (for example, different organizations).

EOEPCA.SDD.001
Issue Draft for 1.1

42 EOEPCA
Master System Design Document

In a typical OAuth flow, a human resource owner (RO) operating a client
application is redirected to an authorization server (AS) to log in and
consent to the issuance of an access token so that the client application can
gain access to the resource server (RS) on the RO’s behalf in future, likely in
a scoped (limited) fashion. The RS and AS are in all likelihood operating
within the same security domain, and any communication between them is
not standardized by the main OAuth specification.

UMA adds three main concepts and corresponding structures and flows.
First, it defines a standardized API at the AS, called the protection API, that
the RS speaks to; this enables multiple RS’s to communicate with one AS and
vice versa, and because the API is itself secured with OAuth, allows for
formal trust establishment between each pair. This also allows an AS to
present an RO with a centralized user interface. Second, UMA defines a
formal notion of a requesting party (RqP) that is autonomous from an RO,
enabling party-to-party sharing and delegation of access authorization. An
RO need not consent to token issuance at run time but can set policy at an
AS, allowing an RqP to attempt access asynchronously. Third, UMA enables
access attempts to result in successful issuance of tokens associated with
authorization data based on a process of trust elevation in the RqP, for
example, gathering identity claims or other claims from them.

— Wikipedia, https://en.wikipedia.org/wiki/User-Managed_Access

UMA Phases

UMA describes three main phases:

1. Protect Resource
The Resource Owner, who manages online resources at the Resource Server, introduces it to the
Authorization Server so that the latter can begin protecting the resources. To accomplish this,
the Authorization Server presents a Protection API to the resource server. This API is protected
by OAuth (or an OAuth-based authentication protocol) and requires a Protection API Token
(PAT) for access. Out of band, the Resource Owner configures the Authorization Server with
policies associated with the resource sets that the resource registers for protection.

2. Get Authorization
The Client approaches the Resource Server seeking access to an UMA-protected resource. In
order to access it successfully, the Client must first use the Authorization Server’s
Authorization API to obtain authorization data and a Requesting Party token (RPT) on
behalf of its Requesting Party, and the Requesting Party may need to undergo a process of trust
elevation, for example, supplying identity claims. The API is protected by OAuth (or an OAuth-
based authentication protocol) and requires an Authorization API Token (AAT) for access.

3. Access Resource

EOEPCA
Master System Design Document

43 EOEPCA.SDD.001
Issue Draft for 1.1

The Client successfully presents to the Resource Server an RPT that has sufficient authorization
data associated with it, gaining access to the desired resource.

UMA Terminology

To elaborate the descriptions of these phases, UMA employs a set of terminology that is summarised
below…

TERMS

• Policy
The configuration parameters of an authorization server that effect resource access
management - typically defined is terms of "subjects", "verbs" and "objects". Policy
configuration takes place between the resource owner and the authorization server.

• Claim
A statement of the value or values of one or more identity attributes of a Requesting Party. A
Requesting Party may need to provide claims to an Authorization Server in order to gain
permission for access to a protected resource.

• Resource Set
One or more protected resources that a resource server manages as a set - thus, a Resource
Set is the "object" being protected.

• Scope
A bounded extent of access that is possible to perform on a Resource Set - a scope is one of
the potentially many "verbs" that can logically apply to a Resource Set ("object").

• Permission
A scope of access over a particular Resource Set at a particular Resource Server that is being
requested by, or granted to, a Requesting Party. Thus, a Permission is an entitlement that
includes a "subject" (Requesting Party), "verbs" (one or more Scopes of access), and an
"object" (Resource Set).

• Permission Ticket
A correlation handle that is conveyed from an Authorization Server to a Resource Server,
from a Resource Server to a Client, and ultimately from a Client back to an Authorization
Server, to enable the Authorization Server to assess the correct policies to apply to a request
for Authorization Data.

• Authorization Data
Data (e.g. a Permission) associated with an RPT that enables some combination of the
Authorization Server and Resource Server to determine the correct extent of access to allow
to a Client.

TOKENS

• Requesting Party Token (RPT)
An UMA access token associated with a set of Authorization Data, used by the Client to gain
access to protected resources at the Resource Server.

• Authorization API Token (AAT)
An OAuth access token with the scope uma_authorization, used by the Client at the
Authorization API 'RPT Endpoint'. An AAT binds a Requesting Party, a Client being used by
that party, and an Authorization Server that protects resources this Client is seeking access to

EOEPCA.SDD.001
Issue Draft for 1.1

44 EOEPCA
Master System Design Document

on this Requesting Party’s behalf. The issuance of an AAT represents the approval of this
Requesting Party for this Client to engage with this Authorization Server to supply claims,
ask for authorization, and perform any other tasks needed for obtaining authorization for
access to resources at all Resource Servers that use this Authorization Server.

• Protection API Token (PAT)
An OAuth access token with the scope uma_protection, used by the Resource Server at the
Protection API, consisting of the 'Resource Set Registration', 'Permission Registration', and
'Token Introspection' endpoints. A PAT binds a Resource Owner, a Resource Server the owner
uses for resource management, and an Authorization Server the owner uses for protection of
resources at this Resource Server. The issuance of a PAT represents the approval of the
Resource Owner for this Resource Server to use this Authorization Server for protecting
some or all of the resources belonging to this Resource Owner.

ENDPOINTS

• Authorization API
Requires access token with uma_authorization scope (AAT). An entity that can acquire an
access token with this scope is by definition a Client.

◦ RPT Endpoint
An endpoint at the Authorization Server that issues RPTs and Authorization Data to the
Client.

• Protection API
Requires access token with uma_protection scope (PAT). An entity that can acquire an access
token with this scope is by definition a Resource Server.

◦ Resource Set Registration Endpoint
An endpoint at the Authorization Server that allows the Resource Server to register
Resource Sets.

◦ Permission Registration Endpoint
An endpoint at the Authorization Server that allows the Resource Server to request
Permission Tickets.

◦ Token Introspection Endpoint
An endpoint at the Authorization Server that allows the Resource Server to query the
status of an RPT and its associated Authorization Data.

Resource Protection

The resource owner, resource server, and authorization server perform the following high-level
actions to put resources under protection:

1. The Authorization Server issues client credentials to the resource server, (either dynamically or
statically)

2. The Resource Server acquires a PAT from the Authorization Server

3. The Resource Server registers any Resource Sets with the Authorization Server for which it
intends to outsource protection, using the Resource Set Registration Endpoint of the Protection
API

Access Resource

EOEPCA
Master System Design Document

45 EOEPCA.SDD.001
Issue Draft for 1.1

An Authorization Server orchestrates and controls Clients' access on their Requesting Parties'
behalf to a Resource Owner’s protected resources at a Resource Server, under conditions specified
by that Resource Owner through policy.

The process of getting authorization and accessing a resource always begins with the Client
attempting access at a protected resource endpoint at the Resource Server.

If the Client’s attempt has a valid RPT with sufficient Authorization Data, the Resource Owner’s
policies have been met for access to the protected resource, and hence access is granted. See Figure
6.

Figure 6. UMA Access Resource (Success)

Resource Server Register Permission

If the Client’s request at the protected resource has no RPT, or has an invalid RPT or insufficient
Authorization Data associated with the RPT as determined through RPT status checking, the
Resource Server registers a requested permission with the relevant Authorization Server, and
responds to the Client with the resulting Permission Ticket and the Authorization Server’s location.
The extent of the requested permission MUST suffice for the extent of the Client’s access attempt at
that resource. The PAT provided in the API request enables the Authorization Server to map the
requested permission to the appropriate Resource Owner. The Authorization Server returns a
Permission Ticket in its response for the Resource Server to give to the Client that represents the
same extent of requested access that the Resource Server registered. See Figure 7.

EOEPCA.SDD.001
Issue Draft for 1.1

46 EOEPCA
Master System Design Document

Figure 7. UMA Resource Server Register Permission

Client Request Authorization

In order to access a protected resource successfully, a client needs to present a valid RPT with
sufficient authorization data. The client uses the authorization API to acquire an RPT and to ask for
authorization data, providing the permission ticket it received from the resource server.

The authorization server uses the permission ticket to look up the details of the previously
registered requested permission, maps the requested permission to operative resource owner
policies based on the resource set identifier and scopes associated with it, potentially requests
additional information and receives additional information such as claims, and ultimately responds
positively or negatively to the request for authorization data. The authorization server bases the
issuance of authorization data on resource owner policies. Thus, these policies function as
authorization that has been granted ahead of time. See Figure 8.

EOEPCA
Master System Design Document

47 EOEPCA.SDD.001
Issue Draft for 1.1

Figure 8. UMA Client Request Authorization

Optionally, the Authorization Server may need additional information in order to determine
whether the Client is authorized to have this authorization data. The Authorization Server response
indicates "need_info" including one or more sub-properties with hints about the nature of further
required information. The Client then has the opportunity to continue seeking authorization by
engaging in follow-on flows with the authorization server, either directly or through redirection of
an end-user Requesting Party.

4.2.2.3. Policy API

The PDP exposes a REST API that allows to register, remove and update policy documents within
the Authorization architecture. These policy documents are utilized during policy decision checks

EOEPCA.SDD.001
Issue Draft for 1.1

48 EOEPCA
Master System Design Document

(using XACML compliant requests and responses).

Any Resource Server can dynamically interact with the API to assign specific policies to resources
during the execution of their internal processes, or they can delegate this functionality to Resource
Owners, and let them consume the API as they see fit.

The following example showcases how a Resource Owner can have its process deployed,
dynamically registered and protected by an ADES component:

Figure 9. Dynamic Resource Protection through a Policy API

4.2.2.4. Interaction with other components

While the external interactions of the Policy Decision Point with client applications and End-Users
follow the UMA Flow described above, this Building Block also interacts directly with other Building
Blocks for several purposes.

Internal usage of Endpoints

Interaction with other Building Blocks can be found in the following list:

• PDP to Resource Server (i.e ADES): Dynamic Protection of Resources through Policy
Management. Any new resource within the Platform can be dynamically protected by any
component through M2M interactions.

• PEP to PDP requests: Resource ID resolution. If a request for access is performed against the
Policy Enforcement Point, the PEP queries the PDP for a unique resource identification and
generates an access request ticket that Client Applications will be able to use to generate the
corresponding access tokens.

• PDP to external PDP requests: external policy resolution. Whenever a policy decision requires
external checks, the PDP will perform queries against these external PDP Services and integrate
the response within the overall policy resolution procedure.

• PDP to License Manager requests: license-based policies. In the case that a defined policy
contains restrictions based on license agreement or licence limits of use, the PDP will perform
checks against the License Management API, to ensure that corresponding criteria are met.

• PDP to Billing Service requests: bugdets and inter-platform payments. If a requests contains a

EOEPCA
Master System Design Document

49 EOEPCA.SDD.001
Issue Draft for 1.1

billing-based policy that imposes restrictions based on billing identity or requires accounting of
usage for potential inter-platform payments, the PDP will utilize the Billing Service to perform
policy checks.

4.2.3. Policy Enforcement Point

4.2.3.1. Overview

The PEP (acting on behalf of the resource server) receives the client request to access the protected
resource. In the case that the access requires an authenticated user, then the PEP expects that the
request includes a valid access token.

4.2.3.2. Reverse Proxy Functionality

The PEP follows the logic:

• The PEP checks with the PDP whether an authenticated user is required for access

• If no authenticated user is required then the request can continue (pending authorization) as an
'anonymous' user

• If access requires an authenticated user then

◦ If the access token is not present then no user is logged in, so the request should be
redirected to the /authorize endpoint (HTTP redirect)

◦ If the access token is present, then it should be validated with the Login Service (direct call),
as described below

◦ If the access token validation completes successfully then the request can continue (pending
authorization), with the user identity provided by the ID Token received during token
validation

◦ If the token is invalid, then the request should be redirected to the /authorize endpoint
(HTTP redirect)

In addition to this, the PEP also encodes two sets of key information as part of request headers,
when propagating the request to the underlying Resource Server:

• End-User Context: an Authorization Bearer header containing the ID Token generated during
the access request.

• Policy Context: a reference to a temporal, local repository of policy check results associated to
the on-going request. The following image showcases the interactions with an hypothetical
ADES component:

EOEPCA.SDD.001
Issue Draft for 1.1

50 EOEPCA
Master System Design Document

Figure 10. Policy Context Propagation through PEP protected requests.

4.2.3.3. Access Token Validation

The PEP validates the access token by using it as a Bearer token in a request to the Login Service’s
/userinfo endpoint. A successful response has two outcomes:

• Confirms the validity of the access token from the point-of-view of the Login Service that issued
it

• Provides an ID Token for the user that provides the information required to uniquely identify
the user within the EP and utilise this identity within the subsequent policy decision made by
the PDP

The ID Token is a JWT that has been signed by the Login Service. Using the jwks (see section ‘OIDC
Federation’) endpoint of the Login Service, the PEP is able to obtain the necessary keys to validate
the signature of the ID Token. This provides the full user context for the resource access.

4.2.3.4. Resource API

The PEP exposes a REST API that allows to register, remove and update resource references within
the Authorization architecture. These resource references are used to perform the Proxying
functionality (enforcing authorization) when generating access tickets and enable Policy Decisions
to take place on the Policy Decision Points.

Any Resource Server can dynamically interact with the API to register resources during the
execution of their internal processes, or they can delegate protection of resources directly to
Resource Owners, and let them consume the API as they see fit.

The following example showcases how a Resource Owner can have its process deployed and

EOEPCA
Master System Design Document

51 EOEPCA.SDD.001
Issue Draft for 1.1

dynamically registered by an ADES component:

Figure 11. Dynamic Resource Registration through a Resource API

4.2.3.5. Interaction with other components

The Policy Enforcemnt Point mainly interacts with both Client Applications and Services and its
meant to ensure that the proper policies are enforced during access. This not only requires
interaction with both Client and Services, but also requires interaction with internal components.

Internal usage of Endpoints

The Policy Enforcement point requires two interactions with other Building Blocks:

• PEP to Resource Server (i.e ADES): Dynamic Registration of Resources. If a new resource is
generated by interacting with a Resource Server (such as a processing environment), the
resulting asset can be registered dynamically as a resource.

• PEP to PDP requests: Resource ID resolution. If a request for access is performed against the
Policy Enforcement Point, the PEP queries the PDP for a unique resource identification and
generates an access request ticket that Client Applications will be able to use to generate the
corresponding access tokens.

• PEP to Login Service requests: Authentication as Resource Server. Given that the Policy
Enforcement Point acts as the facade of any given service, it is necessary for the PEP to act as a
Resource Server:

◦ Interaction with OIDC Endpoints in order to authenticate as a client application and acquire
Resource Server priviledges.

◦ Interaction with UMA Endpoints in order to perform ticket generation and token
instrospection requests

4.2.4. Billing Service

A Billing Service will operate within the platform which receives reports of billing events from
other components. These are recorded against the relevant billing identity. Billing events have
arbitrary attributes defined in them, which the billing service does not interpret (but are sufficient
for the pricing engine, see below), a transaction ID identifying the original user action which
caused it, and enough additional information for display to the user. Some example billing events
might be:

EOEPCA.SDD.001
Issue Draft for 1.1

52 EOEPCA
Master System Design Document

• 1 hour of extra-large-vm

• 12 CPU-hours of container execution time

• licence for satellite image x

• execution cost of $x from federated platform y

Individual components decide when to generate billing events - for example, compute cost billing
events may be generated every hour. Billing events may have a start and end or a single time -
events with a start and end may be split to keep them within a single billing window.

The Billing Service can generate reports for the user. This may involve combining billing events in
to line items, such as consolidating VM use in to the number of hours so far this month.

The Billing Service will generate bills for each billing window by pricing complete windows. Fixed
prices are assigned and recorded at this point. It may also keep track of and, where supported by
the platform, initiate payments.

To support the PDP and other services, the Billing Service may be required to periodically assess the
account’s standing and make decisions on the acceptibility of resource use. This depends on the
billing model in use but could involve checking that credits are not exhausted, checking that a
reasonable credit limit has not been reached and the detection of potentially fraudulent behaviour.
An account which is no longer in good standing may result in API requests for resource use being
denied, or it may result in termination messages being sent in response to billing events.

Where billing events are reported in another currency, as may happen with federated resource use,
the Billing Service must determine the time and rate for currency exchange.

4.2.4.1. Interaction with other components

The Billing Service mainly exposes endpoints in order to ingest Billing Events and to generate
Billing Window Reports. These requests are expected to originate from Platform Services.

Interal usage of Endpoints

On the other hand, the Billing Service requires three main interactions with other Building Blocks:

• PDP to Billing Service requests: billing-based policies.

• Billing Service to Login Service/User Profile requests: handling of billing Identities. The Billing
Service may require access to specific billing attributes that reside in the User Profile back-end.
These interactions require:

◦ Usage of OIDC Endpoints in order to authenticate as a client application and acquire the
necessary priviledges to interact, using SCIM, with the back-end storing user information.

◦ Interaction with SCIM Endpoints in order to perform simple billing identity checks and
changes on potential credit attributes.

• Billing Service to Pricing Engine: on-demand price rate calculations. Whenever a the Billing
Service requires calculation of costs (either for Policy resolution or Billing Window Report
generation), it is possible to query the Pricing Engine endpoints in order to acquire this
information.

EOEPCA
Master System Design Document

53 EOEPCA.SDD.001
Issue Draft for 1.1

4.2.5. Pricing Engine

To maximize reusability price calculation is separated in to a different service (but not necessarily a
different address space). Given access to a price database describing current, future and past
configured prices, a Pricing Engine is otherwise stateless.

4.2.5.1. Interaction with other components

The Pricing Engine mainly supports Billing Service functionality:

• Given a list of billing events or consolidated line items within a pricing window return
calculated rates and prices for each one. For some pricing models this may involve multiple
charges for each item or may contain blended rates/prices.

• Return estimated prices for estimated resource use.

• Where a platform wished to provide such a service to users, return price information and
estimated prices in response to API requests.

• Given a commercial licence billing event, calculate the charge to the user, the credit to the
Licenser and the platform fee.

4.2.6. License Manager

4.2.6.1. Interaction with other components

The License Manager exposes a License Management API that could potentially be utilized by
agents outside of the Platform, but its main purpose is to enhance the functionality of the rest of the
Building Blocks. It has also the potential to genrate Billing Events that can be pushed to Billing
Service endpoints.

Interal usage of Endpoints

• License Manager to Billing Service: generation of license-based billing events. Whenever usage
of a License takes place, the License Manager can generate a billing event that will be pushed to
the Billing Service API.

• License Manager to Login Service/User Profile requests: handling of license information. The
License Manager may require access to specific end-user attributes that reside in the User
Profile back-end. These interactions require:

◦ Usage of OIDC Endpoints in order to authenticate as a client application and acquire the
necessary priviledges to interact, using SCIM, with the back-end storing user information.

◦ Interaction with SCIM Endpoints in order to perform simple license checks and extend end-
user information with references to Service Licenses.

4.2.7. User Profile

EOEPCA.SDD.001
Issue Draft for 1.1

54 EOEPCA
Master System Design Document

Work In Progress

TBD: Approach to User Profile Building Block
* Used Technologies and Standards
* Interactions with other building blocks
* Exposed Endpoints

EOEPCA
Master System Design Document

55 EOEPCA.SDD.001
Issue Draft for 1.1

4.3. Use Case Traceability
The following use cases are subject of the design and can be traced against specific related building
blocks and Test Procedures. Use cases currently not supported are marked as Release v2.0 target.

Identifier Description
Building
Block

Related Test
Procedures

EOEPCA-UC-
0101

Each user uniquely identified Login Service
EOEPCAUM-TP-LOG-
0030

EOEPCA-UC-
0102

User identification/authentication using
external Identity Provider

Login Service
EOEPCAUM-TP-LOG-
0010 EOEPCAUM-TP-
LOG-0040

EOEPCA-UC-
0103

User assigned access privileges to
platform resources (data/services)

Login Service
EOEPCAUM-TP-LOG-
0050

EOEPCA-UC-
0104

Unidentified / unauthorised user is
regarded as a Guest with limited access

PEP
EOEPCAUM-TP-PEP-
0020

EOEPCA-UC-
0105

EP enforces authorisation when user
accesses platform resources
(data/services)

PEP

EOEPCAUM-TP-LOG-
0050 EOEPCAUM-TP-
PEP-0020 EOEPCAUM-
TP-PEP-0060

EOEPCA-UC-
0106

EP accesses resources of other platform
on behalf of a user (delegated)

PEP, PDP
EOEPCAUM-TP-PEP-
0060

EOEPCA-UC-
0107

EP enforces authorisation when an
external platform attempts delegated
access on behalf of a user

PEP, PDP
EOEPCAUM-TP-PEP-
0020 EOEPCAUM-TP-
PEP-0060

EOEPCA-UC-
0108

EP customises platform resources based
on user identity and data

PEP, PDP
EOEPCAUM-TP-PEP-
0040 EOEPCAUM-TP-
PDP-00X0

EOEPCA-UC-
0109

EP can ban users identified by
administrators

Login Service,
PEP

EOEPCAUM-TP-LOG-
0020 EOEPCAUM-TP-
PEP-0040

EOEPCA-UC-
0110

User deletes their account and their
personal data is removed

User Profile
EOEPCAUM-TP-USP-
0010

EOEPCA-UC-
0111

User registers Login Service
EOEPCAUM-TP-LOG-
0010

EOEPCA-UC-
0112

User updates account details User Profile
EOEPCAUM-TS-USP-
0030

EOEPCA-UC-
0206

The EP can filter or mark Resource
search results and information display
based on user account data (eg, licences
purchased, academic vs commercial user)
and Resource access rules / ownership

Login Service,
PEP, PDP

EOEPCAUM-TP-LOG-
0050 EOEPCAUM-TP-
PEP-0040 EOEPCAUM-
TP-PDP-00X0

EOEPCA.SDD.001
Issue Draft for 1.1

56 EOEPCA
Master System Design Document

Identifier Description
Building
Block

Related Test
Procedures

EOEPCA-UC-
0207

The EP can refuse access to some or all
aspects of a Resource based on the User
and Resource (eg, show summary or
search result but not allow data access,
documentation access or visualization)

Login Service,
PEP, PDP

EOEPCAUM-TP-LOG-
0050 EOEPCAUM-TP-
PEP-0020 EOEPCAUM-
TP-PEP-0040
EOEPCAUM-TP-PDP-
00X0

EOEPCA-UC-
0212

The EP can request, record and display
acceptance of identified T&Cs by a User
(noting that a User may have to accept
T&Cs more than once if he represents
multiple organizations)

License
Manager

Planned for Release 2.0

EOEPCA-UC-
0213

The EP can prevent access to Resources
when T&C acceptance is required and not
completed and can prompt the user to do
this (note: this access may happen inside
a UI, API or executing processing service)

License
Manager

Planned for Release 2.0

EOEPCA-UC-
0221

Use of Resources (including search,
metadata display, costing, download and
execution, but not modification of
resources) still functions in as high-
performance and uniform a way as
possible even when the Resources are
located on other platforms within the
federation (and access and ownership
rules are still enforced)

All

EOEPCAUM-TP-PEP-
0010 EOEPCAUM-TP-
PEP-0040 EOEPCAUM-
TP-PDP-00X0

EOEPCA-UC-
0405

The EP can establish federation with
remote peer platforms for the purpose of
invoking processing platform→platform

Login Service,
PDP

EOEPCAUM-TP-LOG-
0010 EOEPCAUM-TS-
PDP-0060

EOEPCA-UC-
0507

An interactive application can access the
platform APIs (eg to run Processing
Services) under the delegated credentials
of the Consumer

Login Service,
PEP, PDP

Planned for Release 2.0

EOEPCA-UC-
1002

The API is programming-language
agnostic and accessible to non-
professional programmers and scientists

Login Service,
PDP, PEP

EOEPCAUM-TP-PEP-
0050 EOEPCAUM-TP-
PDP-0040

EOEPCA-UC-
1003

API clients are provided for popular
programming languages within the EO
domain, eg Python

um-common-
libraries

N/A

EOEPCA-UC-
1004

An API authentication method suitable
for use with external applications (such
as mobile apps and web apps) is
provided, eg oAuth

Login Service,
PEP, PDP

EOEPCAUM-TP-PEP-
0050 EOEPCAUM-TP-
PDP-0040

EOEPCA
Master System Design Document

57 EOEPCA.SDD.001
Issue Draft for 1.1

Identifier Description
Building
Block

Related Test
Procedures

EOEPCA-UC-
1005

An API authentication method suitable
for use with scientist-written ad-hoc
scripts is provided, eg API keys

Login Service,
PEP, PDP,
License
Manager

Planned for Release 2.0

EOEPCA-UC-
1303

An Expert User can create Interactive
Applications which are implemented
using server-side infastructure which is
not managed as dedicated resources
within an application session - for
example, an Interactive Development
Environment consisting of JupyterHub
and Kubernetes cluster all shared
between all users. The application will
still be able to use delegated credentials
for data access.

Login Service,
PEP, PDP

Planned for Release 2.0

EOEPCA-UC-
1506

Access to platform facilities (which may
include remote platforms) by the code
under development will use the user’s
credentials and be subject to normal
access constraints (eg, T&Cs)

Login Service,
PEP, PDP

Planned for Release 2.0

EOEPCA-UC-
1701

A Licenser who has published Resources
in the catalogue on a commercial basis
can specify an API endpoint which will be
contacted to authorize access to those
Resources or can specify a list of
permitted user IDs

Login Service,
PEP, PDP

Planned for Release 2.0

EOEPCA-UC-
1702

The platform can restrict use of a
Resource based on this API endpoint,
including time or volume limits after
which access must be re-authorized

Login Service,
PEP, PDP

Planned for Release 2.0

EOEPCA-UC-
1705

The Licenser’s sales site can use an
authentication protocol (such as OpenID
Connect) to authenticate buyers using
their EP credentials, and also to avoid a
need to log in for users already logged in
to the EP

License
Manager

Planned for Release 2.0

EOEPCA-UC-
1707

A User submitting processing to run on
another EP must authorize the home
platform to access his host platform
account’s compute resources (eg using
oAuth)

Login Service Planned for Release 2.0

EOEPCA.SDD.001
Issue Draft for 1.1

58 EOEPCA
Master System Design Document

Identifier Description
Building
Block

Related Test
Procedures

EOEPCA-UC-
1810

A User can agree to the T&Cs and prices
and, if platform payment is fully
authorized, will be granted access

Login Service,
License
Manager,
Billing Service,
Pricing Engine

Planned for Release 2.0

EOEPCA-UC-
1817

The home platform can 'hold' some of the
credit in the User’s account following
platform payment authorization, if
required by its billing model

Billing Service,
Pricing Engine

Planned for Release 2.0

EOEPCA
Master System Design Document

59 EOEPCA.SDD.001
Issue Draft for 1.1

Chapter 5. Processing and Chaining
The Processing & Chaining domain area must provide an extensible repository of processing
functions, tools and applications (referred here generically as ‘processing services’) that can be
discovered by search query, invoked individually, and utilised in workflows.

The Resource Management domain area provides the facilities through which processing services
are published in an Application Catalogue that acts as a Marketplace and facilitates their discovery,
(see section Application Catalogue). Via the Marketplace users have a single point of access to all
processing services that are published across the federated system. In order to invoke processing
services and workflows, users must specify the data inputs and parameterisation.

Users must be able to define and execute workflows that chain processing steps, in which the
input(s) of a step are provided by the output of preceding step(s). Users can publish workflows as
new processing services, and so the possibility of workflow nesting.

A workflow comprises multiple steps (processing service invocations), each of which can be
executed on the platform that is closest to the data. Thus, the workflow must be orchestrated to
invoke the steps on the appropriate platform and stage in/out the data between platforms along the
execution pipeline. Thus, processing services should be relocatable between federated EO
platforms, such that they can be deployed and instantiated for execution ‘close to the data’. This
implies that applications are packaged in a way that is self-contained, standardised and agnostic of
the underlying hosting technology.

Users must be able to develop and integrate their own processing services into the platform. Once
integrated the user can publish their processing service so that it is discoverable by search query
and available in the federated marketplace – and hence available for exploitation by other users,
including use in workflows. In support of this, an integrated development environment should be
provided that allows users to develop, test and debug their applications before submission.

The interface between the Processing Framework and the compute resource should be abstract so
that the solution is not tied to any particular provider (cloud, DIAS, etc.).

EOEPCA.SDD.001
Issue Draft for 1.1

60 EOEPCA
Master System Design Document

Figure 12. Processing & Chaining Use Case

In meeting these requirements the following key challenges are identified:

• Processing and data interoperability must be established through clear and consistent metadata
definitions, to ensure that type mismatches are avoided. This is particularly challenging across
federated systems where it becomes more difficult to enforce use of common profiles and
vocabularies

• Defining an application packaging approach whose paradigm is easy to work with, whilst
providing a rich environment that allows expert users to exploit the full compute capability of
the platform

• Federation of processing services across the network of EO resources, such that processing
implementations can be made available ‘on-demand’ amongst federated platforms, to facilitate
the movement of the “processing to the data”. Use of a common packaging format that is
agnostic of underlying host characteristics is key to this challenge

• Enforcement of access controls to processing and data resources through multi-step federated
workflows requires the user’s ‘request context’ to be carried through all layers of the request
fulfilment. At each point of resource access, the user’s identify and access rights must be
asserted. The service interface standards, (such as WPS, CSW, WCS, etc.), must be evaluated and
necessary enhancements identified to ensure that the user’s access envelope is respected

5.1. Solution Overview
The Processing & Chaining solution is based upon the work performed in the OGC Testbeds,
described by the following Engineering Reports:

• OGC 17-023 - OGC Testbed-13, EP Application Package ER [TB13-AP]

• OGC 17-024 - OGC Testbed-13, Application Deployment and Execution Service ER [TB13-ADES]

• OGC 18-049r1 – OGC Testbed-14, Application Package Engineering Report [TB14-AP]

EOEPCA
Master System Design Document

61 EOEPCA.SDD.001
Issue Draft for 1.1

• OGC 18-050r1 - ADES & EMS Results and Best Practices Engineering Report [TB14-ADES]

Additionally, the current OGC Testbed-15 Thread-2 Earth Observation Process and Application
Discovery (EOPAD).

Processing-services are packaged as Docker images, which can then be deployed as self-contained
applications within the Exploitation Platform’s processing framework. OGC-WPS provides a
standard interface to expose all processing services (and workflows) for invocation by WPS clients.

Each processing service is described by an Application Descriptor, which is a file that accompanies
its deployment to the processing framework of the EP. The Application Descriptor provides all the
metadata required to accommodate the processor within the WPS service and make it available for
execution.

The architecture is defined by the following main components:

Execution Management Service (EMS)

WPS-T (REST/JSON) service that provides an umbrella orchestration service to deploy/invoke
processing services within the ADES of the appropriate (close to data) Exploitation Platform.
Thus, the EMS is responsible for the orchestration of workflows, including the possibility of steps
running on other (remote) platforms, and the on-demand deployment of processors to
local/remote ADES as required.

Application Deployment and Execution Service (ADES)

WPS-T (REST/JSON) service that incorporates the Docker execution engine, and is responsible for
the execution of the processing service (as a WPS request) within the ‘target’ Exploitation
Platform (i.e. one that is close to the data). The ADES relies upon the EMS to ensure that the
processor is deployed as a WPS service before it is invoked.

Application Catalogue (ref. Resource Management domain)

An Application Catalogue provides an inventory of processing services that acts as a
Marketplace for the discovery and browse for processing services. The Application Catalogue
provides a service that can be searched by facet/keyword and provides supporting metadata and
information.

Thus, each platform that supports processing should include an ADES, and each platform that
supports workflow orchestration should include an EMS.

Figure 13 illustrates the main architecture components and their interfaces.

EOEPCA.SDD.001
Issue Draft for 1.1

62 EOEPCA
Master System Design Document

Figure 13. Processing & Chaining Overview

In order for processing services and their data input/outputs to be aligned a formalism is required
to describe the data types for M2M consumption. This is required to ensure that a processor is
invoked with compatible data inputs, its outputs are understood, and that coherent workflows can
be constructed in which the outputs → inputs are aligned. For this purpose, Common Workflow
Language (CWL) is used in the Application Package Description to describe the processor
input/ouputs.

The Application Catalogue is the subject of the current Testbed-15 through which the Data Model
and catalogue Service Interface are being explored.

For the Expert User with a service/application to execute in the EP, we might consider three levels
of integration:

• Importing
The service/application is packaged (unchanged) as a black-box.
Relies upon the stage-in/out of data to the applications existing data access expectations by the
Processing Framework.

• Adapting
The service/application is adapted (modified) to use the data access interfaces offered by the

EOEPCA
Master System Design Document

63 EOEPCA.SDD.001
Issue Draft for 1.1

Common Architecture.

• Porting
The service/application is ported to use the services of the EP intrinsically - typically by use of
the Client Library defined by the common architecture.

Section Processing Service Data Access provides further discussion regarding the data stage-
in/out approach for processing services.

5.2. Resource Layer (Infrastructure) Interface
The Processing & Chaining has significant points of interface with the hosting infrastructure for
provision of scalable compute resource and access to data for input/output. The definition of this
interface should be agnostic of the infrastructure provider onto which the Exploitation Platform is
deployed.

Kubernetes provides an infrastructure abstraction layer that allows the EP to be architected in a
way that is agnostic to the underlying hosting infrastructure – the only requirement being the
existence of a K8s cluster in which to deploy and run the platform. This abstraction provides points
of interface for:

• System deployment

• Access to back-end data

• Execution of processing services and applications

Thus, the Processing & Chaining solution is designed to utilise a Kubernetes Cluster, whose API
provides the means to invoke the WPS processing services as docker containers, and also provides
the means to support stage-in/out of data for the process execution.

This has particular impact on the ADES, as described in [ADES].

5.3. Application Packaging
The Application Package provides a platform independent and self-contained representation of a
software item, providing executable, metadata and dependencies such that it can be deployed to
and executed within an Exploitation Platform. Typically, in the context of the exploitation platform,
the application is an EO data processing algorithm or a workflow.

The Application Package allows the application to be exchanged in an interoperable way on any
platform within the EP ecosystem. Additionally, the developer of the package need only concern
themselves with conformance to the package specification and need not concern themselves with
the infrastructure details of any particular EP.

The Application Package comprises two main parts:

• Application Descriptor - metadata descriptor file

• Application Artefact – i.e. the ‘software’ component that represents to the execution unit

In accordance with the approach advocated in OGC Testbed-14 (ref. [TB14-ADES]), the Application

EOEPCA.SDD.001
Issue Draft for 1.1

64 EOEPCA
Master System Design Document

Descriptor is encoded in accordance with the WPS-T DeployProcess document defined by WPS-T
JSON encodings (ref. [WPS-REST-JSON]). In this way, the Application Descriptor broadly provides
the following details:

• A link to the application execution unit

• A description of the application’s inputs and outputs

• Other auxiliary information

Currently supported are two types of application execution unit:

1. Docker container

2. Workflow, expressed in CWL

…but the design of the application package should be extensible to support future types.

The Application Descriptor must address the needs of at least two types of users:

Application Developers

Who may not be IT experts (such as scientists), requiring an encoding that is simple enough for
them to create for themselves

Machine-To-Machine (M2M)

Requiring all the information to ensure that the application is fully portable and will behave the
same on all supporting platforms

Figure 14 provides an illustration of the Application Descriptor structure.

Figure 14. Structure of Application Descriptor data model

EOEPCA
Master System Design Document

65 EOEPCA.SDD.001
Issue Draft for 1.1

Thus, the WPS-T DeployDocument comprises the following parts:

processDescription (WPS Process Description (WPD))

Corresponds to a WPS Process Description document encoded in JSON, including details such as
process ID, name, title, etc. as well as options to describe the job invocation and the output
handling.
Additional points of note:

• cwlDescriptor
The cwlDescriptor provides a CWL formatted (YAML) workflow definition of the application.
This aids the stage-in/out of data by providing a CWL definition of the input/outputs of the
application, and is given in addition to the inputs/outputs included in the body of the WPD.
This entry is included as an extension to the WPD via an owsContext offering.
Note that this is not required for the Execution Unit type of ‘workflow’ which already carries its
CWL file in its executionUnit parameter.

• inputs/outputs
Specifies the number and types of the data input/outputs. Provided as part of the WPD, and
in addition to the contents of cwlDescriptor.
The inputs can be provided as references to data, accessible through data access service
endpoints, or can be specified as query parameters collection/AOI/TOI.

executionUnit

Specifies the ‘software’ item to be executed, within the context of the deploymentProfileName, as
follows:

• dockerizedApplication
executionUnit specifies the URL of the docker image to run.

• workflow
executionUnit specfies the URL of the CWL file that defines the workflow.

deploymentProfileName

Enumerates the type of the executionUnit. Currently supported:

• Docker image (http://www.opengis.net/profiles/eoc/dockerizedApplication)

• CWL Workflow (http://www.opengis.net/profiles/eoc/workflow)

Example Application Descriptor

{
 "processDescription": {
 "process": {
 "id": "EoepcaProcessor",
 "title": "EOEPCA Processor",
 "owsContext": {
 "offering": {
 "code": "http://www.opengis.net/eoc/applicationContext/cwl",
 "content": {
 "href": "https://eoepca.github.io/processor/cwl/EOEPCAProcessor.cwl"

EOEPCA.SDD.001
Issue Draft for 1.1

66 EOEPCA
Master System Design Document

http://www.opengis.net/profiles/eoc/dockerizedApplication
http://www.opengis.net/profiles/eoc/workflow

 }
 }
 },
 "abstract": "",
 "keywords": [],
 "inputs": [
 {
 "id": "images",
 "title": "Input Images",
 "formats": [
 {
 "mimeType": "application/zip",
 "default": true
 }
],
 "minOccurs": 1,
 "maxOccurs": "unbounded",
 "additionalParameters": [
 {
 "role": "http://www.opengis.net/eoc/applicationContext/inputMetadata",
 "parameters": [
 {
 "name": "EOImage",
 "values": [
 "true"
]
 }
]
 }
]
 }
],
 "outputs": [
 {
 "id": "output",
 "title": "Stacked Image",
 "formats": [
 {
 "mimeType": "image/tiff",
 "default": true
 }
]
 }
]
 },
 "processVersion": "1.0.0",
 "jobControlOptions": [
 "async-execute"
],
 "outputTransmission": [
 "reference"

EOEPCA
Master System Design Document

67 EOEPCA.SDD.001
Issue Draft for 1.1

]
 },
 "executionUnit": [
 {
 "href": "hub.docker.com/eoepca/processor:latest"
 }
],
 "deploymentProfileName": "http://www.opengis.net/profiles/eoc/dockerizedApplication"
}

5.4. Execution Management Service (EMS)
The EMS provides a Transaction WPS 2.0 (WPS-T) interface, with REST/JSON encodings, as
described in section WPS-T REST/JSON.

WPS-T extends standard WPS by adding DeployProcess and UndeployProcess operations. Once a
process has been deployed to a WPS then the existing wps:Execute operation remains applicable for
execution in the standard way.

The EMS provides a WPS-T (REST/JSON) interface that provides an umbrella orchestration service
to deploy/invoke processing services within the ADES of the appropriate (close to data) Exploitation
Platform. Thus, the EMS is responsible for the orchestration of workflows, including the possibility
of steps running on other (remote) platforms, and the on-demand deployment of processors to
local/remote ADES as required.

The description in this section refers to the WPS operations: GetCapabilities, DescribeProcess,
Execute, GetStatus, GetResult, DeployProcess, UndeployProcess. See WPS-T REST/JSON for a
mapping of these operations into the REST/JSON encoding.

The EMS provides the endpoint for the user’s web client, through which applications and
workflows are deployed to the EMS to make them available for execution.

Figure 15 illustrates the deployment of applications and workflows to the EMS.

Figure 15. EMS Deployment

EOEPCA.SDD.001
Issue Draft for 1.1

68 EOEPCA
Master System Design Document

Applications are deployed to the EMS so that they are available for inclusion in workflows.

Workflows are deployed to the EMS where the steps of the workflow reference applications that are
known to the EMS.

As illustrated in Figure 16, the EMS orchestrates the workflow execution by invoking the steps as
subordinate invocations of wps:Execute at the ADES identified at time of task invocation. The EMS
uses wps-t:DeployProcess on the target ADES to ensure that the process is registered before
execution.

Figure 16. EMS Workflow Execution

At time of wps:Execute the input data must be specified by the invoking user. Two possibilities are
currently identified, both of which should be supported by EMS:

1. Direct URL references to specific data products, accessible through data access service
endpoints (such as WCS, WFS, etc.)

2. OpenSearch query parameters that identify the data characteristics as a combination of
Collection/AOI/TOI

In case 1) the EMS can simply pass-through the input arguments to the ADES WPS-T.

In case 2) the EMS must resolve the input data by OpenSearch catalogue queries with the provided
parameters. The OpenSearch catalogue end-point can either be defined by the application (in its
Application Descriptor), or defined as a parameter of the wps:Execute.

In either case, the end result is that the EMS resolves the input specification to a set of data
products URLs that can be passed on to the ADES for execution.

The EMS requires a means to determine the target platform (ADES) for the execution, i.e. typically
the one closest to the data. In the case of the OGC Testbeds, this determination was made as a one-
to-one mapping from the collection identified in the input data specification. If collections are

EOEPCA
Master System Design Document

69 EOEPCA.SDD.001
Issue Draft for 1.1

identified to be globally unique, e.g. with a namespace prefix that identifies the hosting platform,
then this assertion can be reliably made and the target ADES can be derived from the collection ID.
Otherwise, the wps:Execute must be parameterised suitably to identify the target ADES.

Performing the orchestration between steps, the EMS must handle the stage-in and stage-out of
data. In the simple case, the result URL returned from a step can be directly used as an input URL
for the subsequent step. Use of CWL and the accompanying cwl-runner tool should facilitate this
orchestration.

The end result of the successful execution is to present the output result to the invoking user. The
EMS establishes the location of the results within the storage provision of the Exploitation Platform,
and interfaces with the EP Workspace component (Workspace) to register the result in the user’s
workspace. At this point the WPS execution is complete as reported by the wps:GetStatus and
wps:GetResult.

5.5. Application Deployment and Execution Service
(ADES)
The ADES provides a WPS-T (REST/JSON) service that incorporates the Docker execution engine,
and is responsible for the execution of the processing service (as a WPS request) within the ‘target’
Exploitation Platform (i.e. one that is close to the data). The ADES relies upon the EMS to ensure that
the processor is deployed as a WPS service before it is invoked.

The main responsibilities of the ADES are:

• Check the user is authorized to access the requested data

• Perform stage-in of data before execution

• Invoke the container from the Docker image in accordance with the ApplicationDescriptor and
the wps:Execute request

• Monitor the status of the job and obtain the results

• Perform stage-out of results at execution conclusion

Resource Layer (Infrastructure) Interface introduces the use of Kubernetes (K8s) as the provider
agnostic interface to the Resource Layer. The ADES has touch-points with the Resource Layer for
access to data and compute resource. The following sub-sections elaborate the approach.

The work carried out in the OGC Testbeds 13/14, performed the execution of the ‘packaged’
processing service by invoking the ‘run’ of a docker container in the machine that hosts the WPS-T
service. The Common Architecture design builds upon this, by instead invoking the container as a
K8s Job that is deployed for execution in the K8s cluster.

This approach is consistent with the current Application Package / ADES definition that specifies a
docker image for the processing service. As illustrated in Figure 17, the ADES provides a K8s-aware
Execution Engine that handles the complexities of constructing the jobs and interfacing with the
K8s cluster.

EOEPCA.SDD.001
Issue Draft for 1.1

70 EOEPCA
Master System Design Document

Figure 17. ADES Process Execution

A Kubernetes cluster comprises a set of Nodes. A Node is a worker machine in Kubernetes and may
be either a virtual or a physical machine. Each Node is managed by the Master. A Node can have
multiple pods, and the Kubernetes master automatically handles scheduling of the pods across the
Nodes in the cluster. The Master’s automatic scheduling takes into account the available resources
on each Node.

Pods are the atomic unit on the Kubernetes platform. A Pod is a Kubernetes abstraction that
represents a group of one or more application containers. A Pod always runs on a Node. The
containers in a Pod share an IP Address and port space, are always co-located and co-scheduled,
and run in a shared context on the same Node.

Each WPS processing task will be constructed as a Pod and invoked as a dedicated K8s Job. A Job
creates one or more Pods to perform a given task. The Job object takes the responsibility of Pod
failures. It makes sure that the given task is completed successfully. Once the task is over, all the
Pods are terminated automatically.

Kubernetes provides Namespaces, which are an abstraction that supports multiple virtual clusters
on the same physical cluster. It may be interesting to explore the use of K8s Namespaces for the
purpose of establishing a sandboxed execution environment for each task execution.

EOEPCA
Master System Design Document

71 EOEPCA.SDD.001
Issue Draft for 1.1

5.6. Processing Service Data Access
The Processing Framework (EMS/ADES) provides the environment through which processing
services and workflows access input/output data. The EMS must ensure that the outputs of one step
are marshalled to the next, and the ADES must prepare the inputs before job invocation, and collect
the outputs at the job conclusion. The processing task is invoked as a Docker container. In doing so,
the container execution environment must be provisioned with the input data for the task, and
with the means to ‘export’ its outputs to the processing orchestration. Figure Figure 18 illustrates.

Figure 18. Processing Framework Data Access

Data Input Sources

The data input sources may be the local exploitation platform, or output from a previous
workflow step (local or other platform).

Data Input Protocol

The data input protocol may be natively supported by the processing service - otherwise it will
need to be staged-in by the Processing Framework.

Data Stage-in

In order to stage-in the data, the Processing Framework must support the data access protocol

EOEPCA.SDD.001
Issue Draft for 1.1

72 EOEPCA
Master System Design Document

through which the input data is provided, and it must know the capabilities of the processing
service to be invoked. This represents a two-way contract between the Platform (on behalf
of the Processing Framework) and the service/application being executed. Options for
staging-in the data include local file-system access (e.g. via s3fs-fuse mount), or it may be more
optimal for the service to access the data directly via HTTP-based interfaces, e.g. to exploit the
efficiencies offered by cloud-optimised file formats.

Data Stage-out

The ADES stages-out the results from the service/application.
The EMS orchestrates the outputs to the next workflow step, or makes available the results to the
end-user.

Data Output Protocol

The data output protocol must be supported by the data destination. The retrieval of the output
data is facilitated by use of simple approaches that can be encoded in an HTTP-base URL, such as
HTTP GET/KVP or Object Store.

Data Output Destination

The data output destination is either the EMS/next-process for a workflow, or the end-user
receiving their results. The two-way Platform (Processing Framework) <→ Service/Application
contract informs this data flow, with the workflow construction/orchestration taking into
account the respective capabilities of the service/application and the platform in which it is
being invoked.

The work carried out in the OGC Testbeds 13/14 relied upon use of mounted volumes within the
processing task docker container. These mounted volumes present the input data, and receive the
output data, as ‘local’ file system access from the point of view of the running container and the
processor running within. Use of mounted volumes is equivalently supported by K8s, and is an
approach that is relied upon for many (existing) applications that are capable only of accessing data
through POSIX file-system interfaces.

Thus, for Mounted Volumes, the approach is to use standard container volumes that present as
well-identified directories within the container. The input data is provided in a read-only input
directory that mounts into the container hosting infrastructure. Similarly, an empty writable
directory is presented for the processing to write is outputs, to be collected by the Processing
Framework.

Nevertheless, we might envisage that access to the underlying data will be provided by the hosting
platform through a variety of data access protocols, including: Object Store (S3/Swift), OGC (WMS,
WMTS, WFS, WCS, WCPS), OPeNDAP, plus local file-system as mentioned above.

The processing framework must establish an environment in which the data access capabilities of
the processing service are matched to the data access offering of the platform. There are two
possibilities that need to be handled by the Processing Framework:

1. The processing service / application natively supports the data access protocol, in which case
there is no need to stage-in the data. Nevertheless, the Processing Framework must support the
pass-through of input data as URL, and the reception of the output(s) as URL. This is facilitated
by the utilisation of a Data Access Library as described below. Also, it must be ensured that any

EOEPCA
Master System Design Document

73 EOEPCA.SDD.001
Issue Draft for 1.1

outputs, e.g. to object store, are appropriately directed.

2. The processing service / application does not natively support the data access protocol(s) offered
by the underlying platform storage, e.g. the processing service only supports local storage
(mounted volume), in which case the Processing Framework must facilitate access to the data
on behalf of the processing service.

In cases where the processing service does not natively support the data access protocols offered by
the underlying platform, the processing framework must facilitate access to platform data in a form
that can be consumed by the processing service.

To support this, the service/application should declare the data access protocol that it requires. This
declaration should be made in the Application Descriptor (ref. Application Package), and is selected
from a standard set of protocols, including:

• AWS S3 Object Store

• Swift Object Store (OpenStack)

• OGC data access services:

◦ Web Map Service (WMS)

◦ Web Map Tile Service (WMTS)

◦ Web Feature Service (WFS)

◦ Web Coverage Service (WCS)

◦ Web Coverage Processing Service (WCPS)

• OPeNDAP

• Mounted Volume (local storage)

Building upon the work of OGC Testbed-14 (ref. [TB14-AP]), the Application Descriptor described in
section Application Packaging can be enhanced to include additional application capabilities, as
illustrated in Figure 19.

EOEPCA.SDD.001
Issue Draft for 1.1

74 EOEPCA
Master System Design Document

Figure 19. Application Descriptor (Enhanced)

The Application Descriptor is enhanced with additional components:

• Capabilities
Containing, for example, data access protocols supported, (implicitly 'local filesystem' for OGC
Testbeds 13/14).

• Dependencies
Specifying, for example, required interfaces to a specific processing, such as dask/Spark etc.

The 'Platform Capabilities' are elaborated in section Platform Capabilities.

The platform implementation must then ensure that the data interface is presented to the
processing container in accordance with its descriptor. It is the job of the platform implementation
to translate from the back-end data access protocol to that required by the container. There are a
number of techniques that can be employed by the processing framework to facilitate this data
access mediation:

Local File-system Stage-in/out

The processing framework must perform the data retrieval to stage-in the data for presentation
through a mounted volume as local file-system access. At the conclusion of the processing the
outputs must be marshalled into the appropriate platform storage for further consumption, e.g.
push to object store.
The approach can be facilitated by use of a FUSE file-system driver to achieve the mediation.

Use of Filesystem in Userspace (FUSE)

Access to the back-end data storage (e.g. HTTP-based) is provided through a user-space driver
that presents the remote data as if it were a local directory. For example, using s3fs-fuse

EOEPCA
Master System Design Document

75 EOEPCA.SDD.001
Issue Draft for 1.1

(https://github.com/s3fs-fuse/s3fs-fuse), access to data in an S3 object store is provided through a
FUSE mounted directory. Thus, from the perspective of the processing task, inputs (read) and
outputs (write) are accessed through the local file-system interface – satisfying the constraints of
the processor.

Use of Data Access Library

A Data Access Library (DAL) provides an abstraction of the interface to the data. The library
provides bindings for common languages (including python, Javascript) and presents a standard
programmatic semantic for accessing the data from within the processing service codebase.
Specific implementations of the DAL can be made to abstract the data access layer for a given
Exploitation Platform. The Processing Framework must support the ability to 'plugin' an
alternative implementation of the DAL at processor execution time.
See section Data Access Library.

Data Access Gateway

Access to the underlying platform data is provided through a common service layer that
provides standard data access interfaces that are translated (gateway) to those of the underlying
data tier.
For example, to satisfy a processing service that requires an S3 interface, but is executed in an
environment where the data is available through a POSIX file system. Minio (https://github.com/
minio/minio) is an open source object store implementation that overlays an S3 interface over a
POSIX file system.
See section Data Access Gateway.

5.6.1. User Authorization Context

The stage-in/out of data must operate within the context of the user’s ‘account’. Thus, the security
context of the user must be passed through all aspects performed by the Processing Framework on
behalf of the user. This is necessary to ensure that the user is only able to access data to which they
are entitled and accounting & billing considerations are properly maintained.

5.7. WPS-T REST/JSON
This interface specification is used for both the Client <→ EMS, and the EMS <→ ADES interfaces.

WPS-T extends standard WPS by adding DeployProcess and UndeployProcess operations. Once a
process has been deployed to a WPS then the existing wps:Execute operation remains applicable for
execution in the standard way.

The following table is reproduced from [TB14-ADES].

EOEPCA.SDD.001
Issue Draft for 1.1

76 EOEPCA
Master System Design Document

https://github.com/s3fs-fuse/s3fs-fuse
https://github.com/minio/minio
https://github.com/minio/minio

Resource HTTP
Method

Description WPS
operation

/ GET The landing page provides
links to the API definition,
the Conformance statements
and the metadata about the
processes offered by this API

/processes GET Retrieve available processes Get
Capabilities

/processes POST Deploy a process Deploy
Process

/processes/{id} GET Retrieve a process
description

Describe
Process

/processes/{id} DELETE Undeploy a process Undeploy
Process

/processes/{id}/jobs GET Retrieve the list of jobs for a
process

/processes/{id}/jobs POST Execute a process Execute

/processes/{id}/jobs/{jobID} GET Retrieve the status of a job GetStatus

/processes/{id}/jobs/{jobID} DELETE Dismiss a job

/processes/{id}/jobs/{jobID}/result GET Retrieve the result(s) of a job GetResult

/processes/{id}/quotations GET Retrieve the list of quotation
ids for a given process

/processes/{id}/quotations POST Request a quotation for a
given process

/processes/{id}/quotations/{quotationID} GET Retrieve quotation
information

/processes/{id}/quotations/{quotationID} POST Execute a quoted process

/processes/{id}/visibility GET Retrieve the visibility status
for a process

/processes/{id}/visibility PUT Change the visibility status
for a process

/quotations GET Retrieve the list of all
quotation ids

EOEPCA
Master System Design Document

77 EOEPCA.SDD.001
Issue Draft for 1.1

Resource HTTP
Method

Description WPS
operation

/quotations/{quotationID} GET Retrieve quotation
information

/quotations/{quotationID} POST Execute a quoted process

/bills GET Retrieve the list of all bill
identifiers

/bills/{billID} GET Retrieve bill information

/conformance GET list all requirements classes
specified in the standard
(WPS REST/JSON Binding
Core) that the server
conforms to

5.8. Interactive (Graphical) Applications
The work carried out in the OGC Testbeds focused on non-graphical applications, i.e. non-
interactive processing functions executing algorithms without intervention. It is also noted that
WPS does not facilitate the invocation of GUI-based interactive applications which offer a
synchronous experience to the end-user.

Figure 20. Interactive Applications Use Case

That said, the approach to application packaging undertaken in the testbeds does lend itself to the
packaging of GUI-based applications, which can be packaged, deployed and executed as docker
containers, including:

Native applications

A remote desktop (RDP) approach is used to present the interface to the user, typically rendered
through a web page presented in the user’s browser

EOEPCA.SDD.001
Issue Draft for 1.1

78 EOEPCA
Master System Design Document

Web applications

The web application is delivered through the portal interface of the hosting exploitation
platform.

In both cases, docker containers offer a good solution to package and deploy the application. At
execution time it is necessary to ensure that the appropriate ports are exposed from the running
container.

The Application Descriptor needs to be extended to:

• Introduce additional deploymentProfileNames and executionUnit types

• Provide parameterisation to support the delivery of the GUI to the end-user

• Ensure that data access is presented within the container in a way that is compatible with the
GUI application (the mechanisms provided for non-interactive applications may be sufficient).

5.9. Parallel Processing
The OGC Testbeds 13/14 only consider serial processing jobs running in a single Docker container.
Here we consider how this approach can be extended to accommodate job requiring
parallelisation.

One possible approach, is to invoke the processing task as a docker container (as described above),
but then within the implementation of this task it makes subordinate invocations that exploit some
specific data processing clustering infrastructure available within the platform. For example, the
invoked process executes some Python code that then invokes a dask or SLURM cluster to perform
the processing work.

In this case, the processing task would have a dependency that the Exploitation Platform provides
the required data processing technology. In order to resolve this capability dependency the
following approach can be made:

• The processing service declares within its Application Deployment Package, that it ‘requires’ a
particular service

• The Exploitation Platform declares within the capabilities document output from its WPS
endpoint, that it ‘provides’ particular services

• The EMS must ensure that the target EP provides the required service of the processing task to
be invoked

• The parameterisation for the ‘required’ service are passed to the processing task at invocation

A consistent vocabulary of services must be defined to unambiguously express the ‘required’ and
‘provides’ declarations.

5.10. Processor Development Environment (PDE)
The Processor Development Environment provides a rich, interactive environment in which
processing algorithms and services can be developed, tested, debugged and ultimately packaged so
that they can be deployed to the platform and published via the marketplace.

EOEPCA
Master System Design Document

79 EOEPCA.SDD.001
Issue Draft for 1.1

The PDE supports the packaging of the user’s application in accordance with the Application
Packaging format that is suitable for deployment at the EMS/ADES. It provides a sandboxed
environment in which the user can test the deployment and execution of their packaged
application, with access to suitable test data to perform the validation.

The PDE provides the tools for the developer to fully specify the metadata for their validated
application and then add it as a tool in their workspace and/or publish it to the Resource Catalogue
for wider consumption.

5.11. Interactive Analysis Tool
The Interactive Analysis Tool presents a hosted coding environment through which expert users
can interact directly with the data and services of the platform. It should provide support for a
variety of coding languages, including those most popular in the community – Python, R, Julia,
Javascript.

For example, the Interactive Analysis Tool can be provided as a Jupyter Notebook instance that is
provisioned in the user’s context with a ‘platform integration’ layer that provides simple access to
platform resources, including resources held within the user’s Workspace.

It must be integrated with the platforms authentication and authorization scheme in accordance
with the IAM approach described by the User Management domain.

The Interactive Analysis Tool should support the user to save their interactive analysis sessions for
future resumption and sharing with others for purposes of collaboration.

EOEPCA.SDD.001
Issue Draft for 1.1

80 EOEPCA
Master System Design Document

Chapter 6. Resource Management
The role of the Resource Management domain is the storage, discovery and access to resources in
the Exploitation Platform. In this context, resources primarily refers to data and processing assets.

Storage is largely taken care of by the Resource Tier upon which the Exploitation Platform is
hosted. The role of the Exploitation Platform is to ensure that the data can be accessed through
common data access protocols based upon open standards.

This is important for:

• the end-user wishing to access data directly, and accessing their results after processing

• processing services accessing data for input/output

• processing workflow steps accessing intermediate outputs from prior steps

• other federated Exploitation Platforms accessing each other’s data and services through well
understood interfaces

To exploit the services of the Platform, users need to discover available resources and obtain
detailed resource information. For example, a user’s data discovery workflow should include the
ability to view collection/product information and visualise the data in the platform - this applies to
data held within the platform, data added by end-users and data produced as the result of
processing operations within the platform.

Figure 21. Resource Management Use Case

Processing services and applications are also platform resources that are stored in artefact
repositories and must be discoverable by users, including the information required by users to
exploit the service. It is assumed that users will store their software artefacts in external public
repositories such as DockerHub, GitHub, etc. In the future, it may be necessary for an Exploitation
Platform to provide such repository services to its users. Discovery of processing services and
applications is met though the provision of an Application Catalogue.

The inventory and presentation of resources to users must be organised in such a way as to
facilitate the discovery and usage of resources in other federated Exploitation Platforms. For

EOEPCA
Master System Design Document

81 EOEPCA.SDD.001
Issue Draft for 1.1

example, users must be able to discover data and services in other EPs in order to construct and
execute workflows that span multiple federated EPs. Thus a Resource Catalogue provides the
inventory of data, processing services, applications in such a way as to create a Marketplace
for resource discovery, and provide a launchpad for their use within the exploitation
platform.

Access to resources must be controlled according to the privileges afforded to the logged in user,
and appropriate hooks must be established into the EPs accounting and billing subsystems. Thus,
the Resource Management services must be implemented according to the approach defined by
User Management for authorization, accounting and billing.

In addition to the resource holding of the underlying resource tier, the EP maintains a User
Workspace in which each user is able to maintain specific data/services of interest to them, and also
provides a place to hold results of processing operations. The User Workspace should be provided
as a building block of the system that provides this personal inventory. Moreover, the concept can
be extended to define Group Workspaces to create a place for sharing and collaboration.

A Data Ingestion component abstracts the interface to the underlying Resource Tier storage,
ensures that incoming data is formatted in accordance with defined standards, is supported by
appropriate metadata and directed towards the appropriate dataset collection.

The main components comprising the Resource Management domain are illustrated in Figure 22:

• Resource Catalogue

• Data Access Services

• Data Access Gateway

• Data Access Library

• Data Ingestion

• Workspace

EOEPCA.SDD.001
Issue Draft for 1.1

82 EOEPCA
Master System Design Document

Figure 22. Resource Management Overview

To some degree, the role of these components is to provide an integration of the Exploitation
Platform to the Resource Tier, by providing public services that bridge to the underlying data
supply.

6.1. Resource Catalogue
The Catalogue provides the user the capability to discover resources, (including
data/products/services/applications), by browse/search, and to obtain details on specific resources
discovered. Resources of different type can be catalogued and delivered through the same service
architecture and catalogue service interfaces - provided as a consolidated catalogue service, or
through discrete services for each resource type. In each case the catalogue provides an inventory
of resources that can be presented as a Marketplace for users to discover and browse.

Perhaps the most challenging aspect of this is that the Catalogues for both Data and Processing-
Services must facilitate the proper construction of processing tasks, to ensure there is a correct
match of the data types expected as input to the processing. This extends into the construction of
workflows where the data types output by a processing task must match the supported inputs of
the next task in the chain. The Catalogue must have a rich and consistent metadata model for both
Data and Processing-Services in order to achieve these goals.

EOEPCA
Master System Design Document

83 EOEPCA.SDD.001
Issue Draft for 1.1

6.1.1. CEOS OpenSearch Best Practise

The Common Architecture advocates standardisation on the use of OpenSearch based-upon the
CEOS OpenSearch Best Practise [CEOS-OS-BP] which provides a blueprint for catalogue search and
discovery. Within this context, the following OGC extensions and recommendations are applicable:

• OpenSearch GEO: OpenSearch Geo and Time Extensions [OS-GEO-TIME]

• OpenSearch EO: OGC OpenSearch Extension for Earth Observation [OS-EO]

In addition, the possibility to use the JSON-LD processing model might be considered (further
analysis required) through application of:

• OGC EO Dataset Metadata GeoJSON(-LD) Encoding Standard [GEOJSON-LD]

• OGC OpenSearch-EO GeoJSON(-LD) Response Encoding Standard [GEOJSON-LD-RESP]

6.1.2. Application Catalogue

Processing services are published in an Application Catalogue that acts as a Marketplace and
facilitates their discovery. Via the Marketplace users have a single point of access to all processing
services that are published across the federated system. In order to invoke processing services and
workflows, users must specify the data inputs and parameterisation. The metadata for each
application record describes what data an application can be applied to, and how it can be chained
in a workflow.

The Application Catalogue is the subject of the current OGC Testbed-15 EOPAD Thread, through
which the Data Model and catalogue Service Interface are being explored. Thus, in addition to the
best practise identified above, the outcomes of the TB15 EOPAD thread should be taken into
consideration:

• OGC 17-084 (GeoJSON(-LD) metadata encoding for EO collections) [GEOJSON-LD]
Explore the capabilities of OGC 17-084 to encode application metadata

• OGC 17-047 (OGC OpenSearch-EO GeoJSON(-LD) Response Encoding Standard) [GEOJSON-
LD-RESP]
Explore the capabilities of OGC 17-047 to encode OpenSearch responses in GeoJSON(-LD)
Use of multi-step discovery and faceted search

• Registration
Explore transactional extension to OGC-CSW for application registration.

It is anticipated that the outcome of the OGC Testbed-15 (EOPAD) will further inform the design of
the Application Catalogue.

6.1.3. Data Catalogue

The Catalogue provides the user the capability to discover data/products by browse/search, and to
obtain details on specific data/products discovered. The Marketplace concept can be extended to
embrace the discovery and access to data.

EOEPCA.SDD.001
Issue Draft for 1.1

84 EOEPCA
Master System Design Document

6.1.3.1. Metadata Organisation

The data is organised into Collections, typically representing a dataset. Each collection is composed
of multiple granules as files. The catalogue metadata follows a similar organisation and allows the
user to discover the data in natural sympathy with this data organisation. Hence, the metadata is
presented at the following levels:

Browse Metadata (collection)

Browse metadata is defined at the collection/dataset level. It typically uses ISO19115 records to
describe the high-level collection information, such as title, description, spatial/temporal
coverage, list of variables available, access rights, T&Cs, etc.
(For collections, the spatial coverage is often full-earth).

Discovery Metadata (product)

Discovery metadata is defined for each granule (file) comprising the collection. This typically
includes information such as file-type(s), spatial/temporal coverage, variable, data access
(download) method(s). Much of this information can be obtained from the headers of the
individual files – depending on file-type. Thus, the Discovery metadata can in-part be populated
automatically from the underlying files.

Archive Metadata (file)

Archive metadata refers to the information that is available in the file header. As described
above this can be extracted and published into the Discovery metadata of the catalogue.

6.1.3.2. Example Usage with OpenSearch

This metadata model can be exploited, for example, using OpenSearch:

• Initial search is made at the collection level to discover collections/dataset of interest.

• Subsequent OpenSearch requests can then be made to drill-down into a specific collection to
discover and obtain details regarding the granules.

• Once discovered, the granules can then be exploited by the user, for example as input to a
processing request, or downloaded.

• Facets can be applied to both the Browse and Discovery metadata, to supported facetted search
at both levels.

6.1.3.3. Data Access

There is a direct link between the way the data is described in the Catalogue and how it is accessed
by the consumers of the data. This links to the Data Access Services (e.g. WMS. WCS, WFS, etc.)
provided by the EP, and the way in which the access links are encoded into the Catalogue. These
links must be usable by the data consumers which could be processing services, or users
downloading the data.

Hence the contents of the Catalogue reflects the data services offered by the platform, including the
underlying resource tier services. Each data Collection is presented in the Catalogue as accessible
through one or more data access services, as applicable to the specific data. The Catalogue must
present the data access URLs in such a way that the URL resolves correctly to the underlying data

EOEPCA
Master System Design Document

85 EOEPCA.SDD.001
Issue Draft for 1.1

via the providing data access service.

6.1.3.4. Catalogue Composition/Aggregation

The Exploitation Platform is designed to be hosted in a compute environment that is close to the
data of interest. This means that the typical deployment is made to the likes of DIAS, Public Cloud
(such as AWS), or National Research Infrastructure (such as CEDA/JASMIN) – that provide the
Resources-tier/infrastructure upon which the EP relies. The Resources-tier provides virtual ICT-
infrastructure and data. It is common that the Resources-tier provides their own Catalogue to
support the data hosted within.

In order to ensure a coherent link between data discovery and access, the Exploitation Platform
provides its own Catalogue that presents the data holding to be accessed through the available data
access services. In doing so it must aggregate the catalogue records of the underlying resource tier,
the records of other 'federated' platforms, and the value-added data that is contributed through the
actions of users on the EP. Thus the EP provides a Catalogue that is tailored to its service offering to
ensure a consistent data access interface that can be relied upon by other EP services, in particular
by the executing user analysis functions running within the Processing & Chaining context.

Figure 23. Catalogue Aggregation

We wish the exploitation platform to expose a public catalogue that provides both the Browse
(collection) and Discovery (product) views:

• In the case where the Resource-tier provides these in a way that is conformant with the
architecture then these can be relied upon directly for the exploitation platform

• In the case where the Resource-tier provides only a suitable Product catalogue, then the
Collection catalogue must be provided by the EP, with the granule queries being directed to the
back-end catalogue. Alternatively, this could be achieved by harvesting the Resource-tier

EOEPCA.SDD.001
Issue Draft for 1.1

86 EOEPCA
Master System Design Document

product catalogue into the EP catalogue.

• Alternatively, the EP may provide a Catalogue-shim to ensure that an existing Resource-tier
catalogue conforms to the interface demands of the open architecture

• Otherwise, the EP must provide all catalogue aspects.

The important point is to ensure that the EP presents interfaces that conform to its defined open
standards, and is able to take measures to ensure this is the case. From the perspective of the user
of the Exploitation Platform a single Data Catalogue end-point is most desirable. The EP web
interface can present a consolidated user view in the case of multiple catalogue end-points. A
similar consolidation approach can be applied by the EP programmatic API, which can present a
single end-point on behalf of the back-end data catalogues.

6.1.4. Federated Discovery

In order that a user is able to discover data/services of interest in a federated network of
Exploitation Platforms, an approach to Catalogue federation must be established between
collaborating platforms.

Figure 24. Catalogue Federation

As illustrated in Figure 24 there are a number of possible approaches:

• Gateway – A central proxy

• Centralised – Central mirror

• Distributed - Catalogues mirror each other

Further analysis is required to understand these options, their applicability and impact on the
Common Architecture.

EOEPCA
Master System Design Document

87 EOEPCA.SDD.001
Issue Draft for 1.1

6.2. Data Access Services
The Exploitation Platform provides access to data through public services based upon Open
Standards, for the consumption by end-users and other federated platforms.

The primary services provided by an Exploitation Platform should include:

• OGC Web Map Service (WMS)

• OGC Web Map Tile Service (WMTS)

• OGC Web Feature Service (WFS)

• OGC Web Coverage Service (WCS)

• OGC Web Coverage Processing Service (WCPS)

• Services provided by Resource Tier:

◦ AWS S3 Object Store

◦ Swift Object Store (OpenStack)

Other services that may also be considered include:

• WebDAV

• FTP

• CDMI

Integration of these data access services with the data-layer of the hosting Resource Tier relies upon
the Data Access Gateway providing an infrastructure agnostic interface for accessing the
underlying data holding.

6.3. Data Access Gateway
The EO datasets are stored according to the underlying storage technology of the infrastructure
Resource Tier. The storage interface presented is not under the control of the Exploitation Platform.

The role of the Data Access Gateway is to provide an abstraction layer on top of the underlying
storage to present a well-defined storage interface to the other components of the Exploitation
Platform.

The main EP components that require data access are:

• Processing services and applications: stage-in/out of data/results

• Platform Data Access Services (WMS,WCS,etc.): access to datasets

• Ingestion: storage of ingested data

In the EP system design, these services are designed to be deployed as containers through
Kubernetes. This presents the possibility that some aspects of the Data Access Gateway can be met
by the facilities offered by Kubernetes volumes. Access to underlying data is provided through
volumes that are mounted into the container. Kubernetes volumes have native support for a

EOEPCA.SDD.001
Issue Draft for 1.1

88 EOEPCA
Master System Design Document

number of common storage technologies (such as AWS EBS, Cinder), however these tend to be block
rather than object storage.

The Gateway must provide a data bridge between the EP components and the Resource Tier. It fills
the gap in the data access capabilities of a given a given service/application, and provides a
common data access interface that such components can target in their implementation. We might
regard the lowest-common-denominator for data access to be a combination of:

• Local filesystem access

• AWS S3 Object Store

Through docker/kubernetes we can use mounted 'volumes' to present data through a local
filesystem interface.
Through s3fs-fuse we can establish local filesystem mount points to S3 object stores.
The Processing Framework makes use of these capabilities to ensure that data is presented to
processing services/applications in a form that they can consume.

Thus, the Data Access Gateway presents an S3 interface as an internal data access abstraction,
whilst implementing the data access interface to the infrastructure Resource Tier storage.

6.4. Data Access Library (DAL)
In addition to the Data Access Gateway, which operates as an internal service, the Data Access
Library (DAL) is provided specifically as a point of integration for processing services and
applications. The Data Access Library provides an abstraction of the interface to the data, with
bindings for common languages (including python. R, Javascript) and presents a standard
programmatic semantic for accessing the data from within the processing service codebase.

The Data Access Library can be seen as a subset of the facilities offered by the Client Library.

The Data Access Library can provide an abstraction at two levels:

Protocol abstraction

Standard programmatic semantics are provided for accessing the data (i.e. CRUD operations on
data granules), that is agnostic of the underlying platform storage data access protocols. This is a
lower level interface that should be applicable to all use cases.

Data Model abstraction

A common object model is defined with programmatic semantics, which provides a higher-level
abstraction of the data that hides the details of the underlying storage, files and file-formats. The
abstraction accesses and parses the underlying data to present data structure representations
within the language bindings. Such an object model would likely be applicable to some, but not
all, use cases. In cases where this approach is not applicable, then protocol abstraction provides
the fall-back option.

Thus, processing services and applications can be implemented in a ‘portable’ way that is agnostic
to the platform resource-tier storage technology.

Specific implementations of the DAL can be made to abstract the data access layer for a given

EOEPCA
Master System Design Document

89 EOEPCA.SDD.001
Issue Draft for 1.1

Exploitation Platform. The library offered to the processing service at runtime must implement the
specific data access interface to the resource-tier storage. Hence, the library should not be ‘hard-
coded’ into the processor application package (Docker image). The Processing Framework must
support the ability to 'plugin' an alternative (platform-specific) implementation of the DAL
dynamically at processor execution time. It may be possible to develop a 'generic' Data Access
Library by implementation against the standard (internal) interface provided by the Data Access
Gateway. In this case, the platform-specifics regarding data access are borne entirely by the Data
Access Gateway.

See also section Processing Service Data Access which provides a discussion of data access
approaches for processing services and the stage-in/out of data.

6.5. Data Ingestion
Data Ingestion presents a standard interface to the EP components, whilst transparently interfacing
with the infrastructure Resource Tier.

During data ingestion the following steps may be performed:

• Authorization check

• Quota check

• Metadata extraction

• Preview generation

• Format conversion

• Storage PUT

• Catalogue PUT

• Trigger notifications

Ingestion raises notifications for the following events:

• Raise indicators to users (visual, emails, etc.)

• Trigger systematic actions in other EP services (e.g. systematic processing)

6.6. Workspace
The Workspace provides a service to users through which they can organise data/processing-
services that are of current interest to them, they are currently working on, and to organise results
of processing executed, Research Objects, etc.

This concept can be extended to create a Group Workspace for sharing and collaboration.

It may be possible to model the Workspace as a Catalogue, in which the browse/discover access
privilege is limited to either an individual user (personal workspace) or a group of collaborating
users (group workspace):

• READ access: OpenSearch should provide a good fit for this interface

EOEPCA.SDD.001
Issue Draft for 1.1

90 EOEPCA
Master System Design Document

• CREATE/UPDATE/DELETE: Transactional extension to OGC-CSW (to be explored)

EOEPCA
Master System Design Document

91 EOEPCA.SDD.001
Issue Draft for 1.1

Chapter 7. Platform API
The Platform API defines standard interfaces at both service and programmatic levels, with the goal
of encouraging interoperation between platforms and providing a consistent and portable
programming paradigm for expert users. The Service API and its associated Client Library together
present a standard platform interface against which analysis and exploitation activities may be
developed, and through which platform services can be federated.

The Service API represents the public service interfaces exposed by the Exploitation Platform for
consumption by its clients. Covering all aspects of the EP (authentication, data/processing discovery,
processing etc.), these interfaces are based upon open standards and are designed to offer a
consistent EP service access semantic within the network of EO resources. Use of the network
(HTTP) interfaces of the Service API is facilitated by the Client Library that provides bindings for
common languages (Python, R, Javascript). The Client Library is a programmatic representation of
the Service API which acts as an abstraction of the Exploitation Platform and so facilitates the
development of portable client implementations.

Figure 25. Client Portability

As illustrated in Figure 25, code implemented against the Client Library is not tied to a particular
Exploitation Platform, but instead can be initialised and executed against any EP that supports the
corresponding Service API. The User Service/Application shown in the figure can either be a
process running external to the platform (e.g. on the users local platform), or running as a deployed
process within the Processing Framework of the platform. It should be noted that the use of the
Client Library is not mandatory - instead the application can be developed against the Service
API directly.

EOEPCA.SDD.001
Issue Draft for 1.1

92 EOEPCA
Master System Design Document

7.1. Service API
The Service API presented by the Exploitation Platform is largely defined and met by the
fundamental data/processing services it offers. There are some additional meta-services that
support the clients in the discovery and usage of these core services. The Service API defined in this
section seeks to define a standard set of interfaces against which the Client Library can be
developed and that can be relied upon for platform-to-platform interoperability.

7.1.1. Platform Capabilities

Provides a single well-known 'bootstrap' URL through which the service capabilities and their
endpoints can be discovered:

• Declare platform capabilities

• Discover service endpoints

• Core platform data/processing services

• Additional meta-services to support clients

• Used by Client Library to initialise its platform interfaces

• Used by EMS to match service/application dependencies with platform capabilities

• Used by other platforms to establish interoperability

/.well-known/eoepca-platform

Example Platform Capabilities

{
 "services": [
 { "type": "oidc", "role": "authentication", "path": "/connect" },
 { "type": "<tbd>", "role": "billing", "path": "/billing" },
 { "type": "opensearch", "role": "data_search", "path": "/search" },
 { "type": "csw", "role": "data_catalogue", "path": "/catalogue" },
 { "type": "opensearch", "role": "app_search", "path": "/applications" },
 { "type": "wms", "role": "map", "path": "/map" },
 { "type": "wmts", "role": "tile", "path": "/tile" },
 { "type": "wfs", "role": "feature", "path": "/feature" },
 { "type": "wcs", "role": "coverage", "path": "/coverage" },
 { "type": "wcps", "role": "datacube", "path": "/datacube" },
 { "type": "s3", "role": "object_store", "path": "/storage" },
 { "type": "wps-t", "role": "ems", "path": "/ems" },
 { "type": "wps-t", "role": "ades", "path": "/ades" },
 { "type": "<tbd>", "role": "workspace", "path": "/workspace" },
],
 "extended_capabilities": [
 { "type": "dask", "role": "cluster", "details": {} },
]
}

EOEPCA
Master System Design Document

93 EOEPCA.SDD.001
Issue Draft for 1.1

The endpoints referenced in eoepca-platform are described in the following sections.

7.1.2. authentication

The URL of the OpenID Connect Provider that implements the [mainLoginService] for user
authentication.

/connect (example)

Implements the OpenID Connect protocol as described in [OIDC].

7.1.3. billing

The URL of the endpoint of the Billing service in the platform.

/billing (example)

The Billing service provides a cenrtralised point of contact within the platform responsible for
tracking and billing for usage of resources and services. The approach to billing is currently not
defined, but will be documented in section Accounting and Billing.

7.1.4. data_search

The URL of the OpenSearch interface to the Data Catalogue.

/search (example)

Implements an OpenSearch interface in accordance with section Resource Catalogue.

7.1.5. data_catalogue

The URL of the OGC CSW (Catalogue Services for the Web) interface to the Data Catalogue.

/catalogue (example)

Implements an OGC CSW catalogue in accordance with standard OGC Catalogue Services 3.0
Specification - HTTP Protocol Binding as defined in [OGC-CSW].

7.1.6. app_search

The URL of the OpenSearch interface to the Application Catalogue.

/applications (example)

Implements an OpenSearch interface in accordance with section Application Catalogue.

7.1.7. map

The URL of the OGC WMS (Web Map Service) interface that supports the data maintained in the
Data Catalogue.

EOEPCA.SDD.001
Issue Draft for 1.1

94 EOEPCA
Master System Design Document

/map (example)

Implements an OGC WMS service in accordance with standard OGC Web Map Server
Implementation Specification as defined in [OGC-WMS].

7.1.8. tile

The URL of the OGC WMTS (Web Map Tile Service) interface that supports the data maintained in
the Data Catalogue.

/tile (example)

Implements an OGC WMTS service in accordance with standard OGC Web Map Tile Service
Implementation Standard as defined in [OGC-WMTS].

7.1.9. feature

The URL of the OGC WFS (Web Feature Service) interface that provides a Feature-oriented access to
the underlying data holding of the platform.

/feature (example)

Implements an OGC WFS service in accordance with standard OGC Web Feature Service 2.0
Interface Standard – With Corrigendum as defined in [OGC-WFS].

7.1.10. coverage

The URL of the OGC WCS (Web Coverage Service) interface that provides a Coverage-oriented access
to the underlying data holding of the platform.

/coverage (example)

Implements an OGC WCS service in accordance with standard OGC Web Coverage Service (WCS)
2.1 Interface Standard - Core as defined in [OGC-WCS].

7.1.11. datacube

The URL of the OGC WCPS (Web Coverage Processing Service) interface that provides a queryable
'data cube' interface to multi-dimensional coverage data.

/datacube (example)

Implements an OGC WCPS service in accordance with standard Web Coverage Processing Service
(WCPS) Language Interface Standard as defined in [OGC-WCPS].

7.1.12. object_store

The URL of the Amazon S3 interface that provides object storage access to the underlying data
holding of the platform.

/object_store (example)

EOEPCA
Master System Design Document

95 EOEPCA.SDD.001
Issue Draft for 1.1

Implements an Amazon S3 service in accordance with Amazon Simple Storage Service REST API
as defined in [AWS-S3].

Amazon S3 Compatibility Subset

For the purposes of this interface, a subset of the full Amazon S3 REST API will be
defined as mandatory. The motivation is to define a consistent interface that is
supported by third-party object storage implementations that provide an S3-
compatible API, such as:

• Ceph (https://ceph.com/ceph-storage/)

◦ CEPH OBJECT GATEWAY S3 API (http://docs.ceph.com/docs/mimic/radosgw/
s3/)

• OpenStack Swift (https://docs.openstack.org/swift)

◦ S3/Swift REST API Comparison Matrix (https://docs.openstack.org/swift/
latest/s3_compat.html)

7.1.13. ems

The URL of the Execution Management Service service.

/ems (example)

Implements an EMS service as described in section Execution Management Service.

7.1.14. ades

The URL of the Application Deployment and Execution Service service.

/ades (example)

Implements an ADES service as described in section Application Deployment and Execution
Service.

7.1.15. workspace

The URL of the 'user workspace' service as described in section Workspace.

/workspace (example)

The interface for the workspace is currently TBD.

7.2. Client Library
The Service API and its associated Client Library together present a standard platform interface
against which analysis and exploitation activities may be developed, and through which platform
services can be federated.

The Client Library is a programmatic representation of the Service API which acts as an abstraction

EOEPCA.SDD.001
Issue Draft for 1.1

96 EOEPCA
Master System Design Document

https://ceph.com/ceph-storage/
http://docs.ceph.com/docs/mimic/radosgw/s3/
http://docs.ceph.com/docs/mimic/radosgw/s3/
https://docs.openstack.org/swift
https://docs.openstack.org/swift/latest/s3_compat.html
https://docs.openstack.org/swift/latest/s3_compat.html

of the Exploitation Platform and so facilitates the development of portable client implementations.

Figure 26. Client Library Service Interfaces

As illustrated in Figure 26, the Client Library provides bindings for common languages (Python, R,
Javascript) that utilise the network (HTTP) interfaces of the Service API, covering all aspects of the
Exploitation Platform functionality (authentication, data/processing discovery, processing etc.).

7.2.1. Client Library Concept Illustration

The design of the Client Library is not yet established. To illustrate its concept we present an
example based upon the workflow scenario that was used to demonstrate the EMS/ADES best
practice in OGC Testbed-14 ([TB14-ADES]). The scenario is shown in Figure 27.

Figure 27. OGC Testbed-14 Workflow Scenario (NDVI Stacker)

Four platforms are involved in the scenario:

Platforms A/B/C

These platforms perform the local execution (ADES) of the MultiSensorNDVI processor on a
collection in their local data holding. These executions are managed under the orchestration
(EMS) of the Primary Platform.

EOEPCA
Master System Design Document

97 EOEPCA.SDD.001
Issue Draft for 1.1

Primary Platform

The Primary Platform is in charge of the workflow. Thus, the orchestration (EMS) is conducted
from this platform, which interfaces to the 'subordinate' platforms (A/B/C) for the execution of
the steps 'close-to-the-data', and then completes the workflow by execution (ADES) of the
NDVIStacker processor to produce the final result.

In response to this scenario we might envisage a client application implemented against the Client
Library as follows…

Example python program using Client Library

import eoepca

Connect to primary platform - e.g. when running on own desktop
primaryPlatform = eoepca.platform("http://primary.platform.eo") ①
primaryPlatform = primaryPlatform.authenticate("bob@home.org", "<<MY-API-KEY>>") ②
Or, use the 'local' hosting platform - e.g. when running in 'cloud' platform
primaryPlatform = eoepca.platform().authenticate("bob@home.org", "<<MY-API-KEY>>") ②
③

Init supporting platforms
platA = eoepca.platform("http://platform-a.eo") ① ④
platB = eoepca.platform("http://platform-b.eo") ① ④
platC = eoepca.platform("http://platform-c.eo") ① ④

Specify extent
extent = { "bbox": [-0.489, 51.28, 0.236, 51.686], "time": ["2018-01-01", "2018-12-
31"] }

Specify processes
coverage1 = platA.collection("PLAT_A_DATA").coverage(extent) ⑤
proc1 = coverage1.process("MultiSensorNDVI") ⑥
proc2 = platB.collection("PLAT_B_DATA").coverage(extent).process("MultiSensorNDVI") ⑤
⑥
proc3 = platC.collection("PLAT_C_DATA").coverage(extent).process("MultiSensorNDVI") ⑤
⑥

Specify workflow
workflow = primaryPlatform.parallel([proc1, proc2, proc3]).process("NDVIStacker") ⑦

Get result - initiates 'lazy' execution
result = workflow.retrieve(format="geotiff", options={}) ⑧
print(result)

① When each platform object is initialised, its endpoint ${platform-url}/.well-known/eoepca-
platform is interrogated, to understand its capabilities and learn its service endpoints.

② The user must authenticate to the primary platform (that 'executes' the workflow), using their
API key.

③ In the case where the client is running on the primary platform then the platform URL is not

EOEPCA.SDD.001
Issue Draft for 1.1

98 EOEPCA
Master System Design Document

required in the initialisation (implying 'local' platform). Examples of this case include: code
running in a hosted Jupyter notebook, or a deployed processing service that chooses to use the
Client Library.

④ Subordinate platforms are initialised (for capabilities) without authentication, on the basis that
the primary platform authentication can be carried through the workflow 'call-stack' through
delegated/federated IAM solution - ref. section Identity and Access Management.

⑤ At each platform the collection is selected through its unique collection identifier, and a data
coverage subset is specified through a definition of the required spatial/temporal extent.

⑥ At each platform the processing task to be exectued against the selected coverage is specified.

⑦ The workflow is defined by requesting the parallel execution of the MultiSensorNDVI processor
on each of the three platforms, with these results providing input to the NDVIStacker process
executed on the primary platform.

⑧ The call to retrieve the outcome of the workflow initiates its 'lazy' execution. Prior to this point
the Client Library has been operating on 'proxy' objects that record the specification of the
workflow requested by the code. At this point the Client Library converts the workflow
specification into a CWL definition suitable for deployment and execution at the EMS of the
primary platform. In response the EMS will interface with the ADES of each subordinate
platform to ensure the MultiSensorNDVI is deployed and executed against the requested coverage.
Subsequently the EMS interfaces with the ADES of the local platform to ensure the NDVIStacker is
deployed and executed against the outputs of the three MultiSensorNDVI process executions.

EOEPCA
Master System Design Document

99 EOEPCA.SDD.001
Issue Draft for 1.1

Chapter 8. Web Portal
The Web Portal represents the browser-based user interface through which the user interacts with
the EO Exploitation Platform.

The Web Portal is not a domain area in its own right – it is contributed to by the collaborative
developments of the defined domain areas. The user’s view of the platform is consolidated through
the browser-based user interface, and hence it is convenient to present all aspects of this view
together. Thus, the Web Portal provides the user facing ‘front’ of the system and interfaces to the
services provided by the domain areas identified in the system design.

The Web Portal must provide a consistent and cohesive user experience that aggregates data and
processing services of the EO Exploitation Platform. In doing so it must provide the following main
functionalities:

• User login

• Marketplace, that provides a federated system search for discovery of data and processing
capabilities

• User workspace to support scientific analysis and collaboration

• Data discovery and download of data

• In-browser visualisation of data and processing/analysis results

• Discovery, execution and monitoring of processing jobs

• Definition of workflows from discovered data/processing resources

• Hosting of user defined applications with interactive user interfaces

• Hosting of rich media content that is linked to catalogued resources. Such content ranges from
documents & manuals to tutorials and instructional media.

• Hosting of community and collaboration tools such as Wikis, FAQs and forums

These user-facing web components form part of other domain areas that together present a rich
integrated user experience. Figure 28 presents these functional areas, organised within their
respective domain areas.

EOEPCA.SDD.001
Issue Draft for 1.1

100 EOEPCA
Master System Design Document

Figure 28. Web Portal: Overview

The platform should support provision of limited access to unauthenticated (guest) users, in which
they can search the marketplace to discover the services and data available, and browse supporting
materials. Access to the full capabilities of the platform requires registered users to identify and
authenticate.

Optionally, a Content Management System (CMS) can provide a framework within which the
platform’s web presence is hosted. It facilitates the creation of user content that can be linked to
data and processing resources in the Resource Catalogue. In addition, the CMS provides out-of-the-
box facilities for Wikis, FAQs, forums etc.

The Marketplace builds a user experience on top of the Application & Data Catalogues that
provides a consolidated inventory of all services, applications and data published within the
federated system. The user is presented with the ability to browse and to perform rich search
queries to discover items of specific interest. The Marketplace content for a data item can include
interactive Data Visualisation, such as providing a WMS viewer that exploits the WMS service
provided with the platform’s resource service. This Data Visualisation component is re-usable
such that it can be used elsewhere in the user experience, for example from the user’s workspace to
visualise some processing results.

The User Workspace provides the environment where users are able to organise data and
processing they are interested in, and to manage asynchronous ‘tasks’ they have submitted into the
platform. Thus, they are able to monitor data retrieval and processing requests and obtain the
outputs at completion. The facility is also provided for them to publish derived ‘added-value’
outcomes from their workspace into the Resource Catalogue, and so present them in the
marketplace.

Experts use the Workflow Composition interface to chain and combine multiple processing
functions and input data into reusable workflows. The interface allows them to select these

EOEPCA
Master System Design Document

101 EOEPCA.SDD.001
Issue Draft for 1.1

resources discovered via the Marketplace, architect and execute their workflow, and ultimately
publish it as a reusable processing function that is available to others in the Marketplace.

Experts are provided with an Interactive Analysis Tool that presents a hosted coding environment
through which they can interact directly with the data and services of the platform. Additionally,
Experts are able to develop and submit to the EO Exploitation Platform their own custom
processing algorithms, tools and applications. The Processor Development Environment provides
a rich, interactive environment in which processing algorithms and services can be developed,
tested, debugged and ultimately packaged so that they can be deployed to the platform and
published via the marketplace.

User Management provides the functionality associated with user profiles. New users will have the
ability to self-register and then manage all aspects of their profile interactively - noting that the
intention in the Common Architecture is to delegate User Identity management to external IdPs.

Operators will have access to management interfaces for system monitoring and administration.

<< End of Document >>

EOEPCA.SDD.001
Issue Draft for 1.1

102 EOEPCA
Master System Design Document

	Master System Design Document: EOEPCA.SDD.001
	Master System Design
	Chapter 1. Introduction
	1.1. Purpose and Scope
	1.2. Structure of the Document
	1.3. Reference Documents
	1.4. Terminology
	1.5. Glossary

	Chapter 2. Context
	Chapter 3. Design Overview
	3.1. Domain Areas
	3.1.1. User Management
	3.1.2. Processing and Chaining
	3.1.3. Resource Management
	3.1.4. Platform API
	3.1.5. Web Portal

	3.2. Architecture Layers

	Chapter 4. User Management
	4.1. Functional Overview
	4.1.1. Identity and Access Management (IAM)
	4.1.2. Authentication
	4.1.3. Authorization
	4.1.3.1. Access Policy Checks
	4.1.3.2. Resource Protection Management
	4.1.3.3. Access Policy Management
	4.1.3.4. End-User Context Propagation
	4.1.3.5. Policy Context Propagation

	4.1.4. Accounting and Billing
	4.1.5. User Management
	4.1.6. Licence and T&C Management

	4.2. Architecture Overview
	4.2.1. Login Service
	4.2.1.1. OIDC ID Token
	4.2.1.2. OIDC Clients
	4.2.1.3. Additional OIDC Capabilities
	4.2.1.4. SCIM Endpoints
	4.2.1.5. Interaction with other components

	4.2.2. Policy Decision Point
	4.2.2.1. XACML (eXtensible Access Control Markup Language)
	4.2.2.2. UMA (User-Managed Access)
	4.2.2.3. Policy API
	4.2.2.4. Interaction with other components

	4.2.3. Policy Enforcement Point
	4.2.3.1. Overview
	4.2.3.2. Reverse Proxy Functionality
	4.2.3.3. Access Token Validation
	4.2.3.4. Resource API
	4.2.3.5. Interaction with other components

	4.2.4. Billing Service
	4.2.4.1. Interaction with other components

	4.2.5. Pricing Engine
	4.2.5.1. Interaction with other components

	4.2.6. License Manager
	4.2.6.1. Interaction with other components

	4.2.7. User Profile

	4.3. Use Case Traceability

	Chapter 5. Processing and Chaining
	5.1. Solution Overview
	5.2. Resource Layer (Infrastructure) Interface
	5.3. Application Packaging
	5.4. Execution Management Service (EMS)
	5.5. Application Deployment and Execution Service (ADES)
	5.6. Processing Service Data Access
	5.6.1. User Authorization Context

	5.7. WPS-T REST/JSON
	5.8. Interactive (Graphical) Applications
	5.9. Parallel Processing
	5.10. Processor Development Environment (PDE)
	5.11. Interactive Analysis Tool

	Chapter 6. Resource Management
	6.1. Resource Catalogue
	6.1.1. CEOS OpenSearch Best Practise
	6.1.2. Application Catalogue
	6.1.3. Data Catalogue
	6.1.3.1. Metadata Organisation
	6.1.3.2. Example Usage with OpenSearch
	6.1.3.3. Data Access
	6.1.3.4. Catalogue Composition/Aggregation

	6.1.4. Federated Discovery

	6.2. Data Access Services
	6.3. Data Access Gateway
	6.4. Data Access Library (DAL)
	6.5. Data Ingestion
	6.6. Workspace

	Chapter 7. Platform API
	7.1. Service API
	7.1.1. Platform Capabilities
	7.1.2. authentication
	7.1.3. billing
	7.1.4. data_search
	7.1.5. data_catalogue
	7.1.6. app_search
	7.1.7. map
	7.1.8. tile
	7.1.9. feature
	7.1.10. coverage
	7.1.11. datacube
	7.1.12. object_store
	7.1.13. ems
	7.1.14. ades
	7.1.15. workspace

	7.2. Client Library
	7.2.1. Client Library Concept Illustration

	Chapter 8. Web Portal

